
Designing Safety Critical Software Systems to Manage Inherent Uncertainty

Alexandru Constantin Serban∗†,
∗Radboud University, Nijmegen, The Netherlands

†Software Improvement Group, Amsterdam, The Netherlands,
Email: ∗a.serban@cs.ru.nl

Abstract—Deploying machine learning algorithms in safety
critical systems raises new challenges for system designers.
The opaque nature of some algorithms together with the
potentially large input space makes reasoning or formally
proving safety difficult. In this paper, we argue that the inherent
uncertainty that comes from using certain classes of machine
learning algorithms can be mitigated through the development
of software architecture design patterns. New or adapted
patterns will allow faster roll out time for new technologies
and decrease the negative impact machine learning components
can have on safety critical systems. We outline the important
safety challenges that machine learning algorithms raise and
define three important directions for the development of new
architectural patterns.

Keywords-Software architecture, Software safety, Machine
Learning

I. INTRODUCTION

Recent developments in Machine Learning (ML) and,
in particular, Deep Learning (DL) showed human level
performance can be achieved (and even exceeded) in tasks
where it is impossible to specify procedural rule sets. Some
examples are object recognition, machine translation or
speech recognition.

The increase in computational power and the rapid devel-
opment of high level APIs have enabled DL algorithms to be
explored in a variety of new scenarios and enabled thinking
about new commercial applications - many of which are
cyber-physical and safety-critical systems. For example, DL
is explored in developing self driving cars [1], unmanned
aerial vehicles (UAV) [2] and surgery robots [3].

However, the probabilistic nature of DL algorithms some-
times conflicts with the safety culture adopted when devel-
oping safety-critical systems.

Instead of guiding the algorithms to learn a task based
on a selection of useful information (which can be carefully
controlled by engineers), DL algorithms are usually trained
by chaining non-linear and linear transformations on raw
inputs. These transformations are tweaked by propagating
the error backwards and adjusting their parameters. As long
as the series of transformations is differentiable and large
amounts of training data are available, DL algorithms are
able to learn very complex tasks without any guidance.

This research was funded by NWO through the i-CAVE project.

This method of learning, called end-to-end learning
(ETE), proves so efficient that it can completely replace large
software stacks. For example, Bojarsky et al. [1] were able
to train a DL algorithm able to perceive the environment and
send commands straight to the actuators of a self-driving car
in an ETE fashion. This means no other software was used
except the actuator software interfaces and the DL algorithm.

Since no control is enforced over the features used in
taking decisions, our understanding of the inner workings
of DL algorithms or their explanatory capacity is limited.
Therefore, from a system perspective, they are regarded as
black box components - making it hard to reason about
safety or give guarantees needed in order to certify a system
to a safety standard (such as ISO26262 [4]).

Moreover, recent research showed that DL algorithms
exhibit low robustness to input distribution shifts - when
small perturbations are applied to inputs, the output and
the confidence of a DL model drop considerably [5]. These
properties of DL algorithms can severely impact the safety
of systems using them [6, 7].

We call this phenomenon inherent uncertainty - the total
uncertainty that comes from using machine learning compo-
nents in a system and propose to address it from a system
and software architecture point of view, rather than (only)
at the level of DL components.

Moving the problem in the architectural space allows us
to reason about it from a system-level perspective and in
a trade-off analysis fashion, specific to software architec-
ture [8]. Moreover, it includes more people in the analysis
loop, since questions regarding ”how much uncertainty can
a system support?” or ”how can uncertainty sources be
contained in the system?” can be answered by a wider
audience consisting of a variety of system engineers and
not only ML experts.

We discuss the impact of deploying fully probabilistic and
opaque components in safety critical systems and raise a
number of challenges where software architecture design can
play a mitigating role, allowing faster roll-out and integration
of such technologies. Although some forms of inherent
uncertainty have been investigated in safety critical systems,
with a focus on autonomous driving [9, 10, 11, 12], our focus
is on mitigating these issues through software architecture.

We propose the development of safety patterns for archi-
tecture design in order to restrict the negative impact DL



algorithms have on systems safety, while allowing a system
to harness their full power. We conclude laying down a
roadmap for future research.

The rest of the paper is structured as follows. Section II
briefly defines software safety and software architecture
design for safety. Section III introduces the challenges raised
by deploying DL algorithms in safety critical systems.
Section IV proposes three directions for developing or
adapting safety architectural patterns. Section V presents
related work, followed by conclusions and future research
in Section VI.

II. BACKGROUND

Safety is the ability of a system to avoid unintended and
harmful behavior during its operation. Whenever a system
can lead to physical damages or loss of equipment, damage
to the environment and even injury or death of human
beings, safety is crucial.

At the system level, safety focuses on identifying and
avoiding hazardous situations. Whenever software is used
in safety critical systems, designers must ensure it does not
cause or contribute to a system reaching a hazardous state.

The ability of a system to withstand hazards and maintain
safe operation is called fault tolerance. Generally, fault
tolerance consists of detecting and recovering from small
defects, before they trigger larger failures. It boils down to
maintaining the system in a safe state despite any faults.

In some cases, when a fault is detected the safe state
can be immediately reached - e.g. by stopping parts of the
system from operation. In others, the system should continue
to operate safely despite any failures, or use some time for
graceful degradation - until a potential safe state is achieved.
For example, the braking system of a vehicle can not stop
operation immediately. However, it can slowly decay letting
the driver know it has to drive to a safe place in a designated
time interval.

Software architecture is the starting point for developing
a safety strategy [13]. In software architecture, recurrent
design problems are abstracted and managed through archi-
tectural patterns. Safety is a non-functional property of a
software system that can heavily influence its design. De-
signing for safety means designing for minimum risk [14].
In order to support safety design, a number of architectural
patterns have been proposed [15]. For example, the triple
modular redundancy pattern is used to enhance safety and
reliability of a system when there is no safe state.

In some cases, design patterns have multiple versions or
are very granular. This makes reasoning about the safety
properties achieved when using them difficult [16]. When-
ever this is the case, the process is supported by external
mechanisms such as formal analysis.

Until recent years, only deterministic software compo-
nents or probabilistic components with limited input and out-
put spaces were explored and used in safety critical systems.

However, the advent of fully probabilistic components with
large input and output spaces poses challenges (1) for finding
appropriate safety design patterns, (2) for reasoning about
the safety properties achieved by using them and (3) for
selecting the most appropriate patterns for the task at hand.
In the next section, we explore some of these challenges.

III. SAFETY CHALLENGES

Recent developments in ML and DL allowed probabilistic
systems with large input and output spaces to be explored
in safety critical systems - making it harder to reason about
safety and to design safe software systems. We explore
some of the properties of these algorithms which raise safety
challenges - where software architecture can help:

• Model complexity and opacity. Most successful ML
and DL constructs, such as neural networks (NN), are
very complex and difficult to understand or explain.
Trying to interpret complex or uninterpretable models
post hoc does not ensure safety (since the interpretation
is not equivalent to the decision rule used in making
predictions) [7].

• Fully probabilistic output. The output of DL systems
represents a probability distribution over a (large) set of
possible outcomes. For example, in object recognition
the set of possible outcomes is approximately the set
of objects in the real world. This makes it impossible
to perform any range checks on the output or design
thorough safeguards.

• Sensitivity to distribution shifts. DL algorithms assume
training and testing data are drawn from the same distri-
bution, making algorithms sensitive even to small distri-
bution drifts. In safety critical systems where the input
distribution can not be controlled (e.g. autonomous
vehicles) this assumption can be easily violated.

• Limited testing scenarios. Due to the large input space,
it is often impossible to test or approximate all possi-
ble inputs. Moreover, because training data is limited,
during deployment the systems will face an even larger
set of inputs, which can not be approximated during
development or testing.

• Formal verification is impossible or not scalable. Ap-
plying classic formal reasoning for safety, such as
model checking, is impossible due to the large input
space, limited to small models or computationally in-
tractable [6].

• Limited fault detection, prevention and containment. In
systems that learn in an ETE fashion, fault detection
is limited to checking if a system is online (similar
to watchdog). Developing other fault detection mecha-
nisms is limited by the lack of internal components and
by the probabilistic nature of the output.

• Limited reasoning about systematic faults. Since the
design space is minimal, it is harder to reason about
errors coming from specifications or requirements.



• Limited reasoning about code. Most DL systems heav-
ily rely on computational software libraries and involve
very limited coding. Thus reasoning on source code or
programming language constructs is limited.

• Limited heterogeneous redundancy. In most cases only
some classes of algorithms achieve the accuracy needed
for a task. For example, only NN achieve high perfor-
mance in object recognition. Unfortunately, all algo-
rithms that use the same constructs exhibit the same
weaknesses [6], making heterogeneous redundancy im-
possible.

IV. DIRECTIONS FOR SAFETY ARCHITECTURAL DESIGN

Coming up with architectural design patterns that can
successfully or partially mitigate the issues mentioned above
will allow faster integration and roll-out of DL technologies
in safety critical systems. As outlined in Section V, the
impact of software architecture design in these scenarios was
not yet explored. We propose and discuss three directions for
future developments.

Delegation of Safety Responsibility: Instead of imple-
menting hard safety mechanisms for DL algorithms, such
as validating the output or implementing heterogeneous
redundancy, one can try to delegate all safety responsibility
to other components or wrap DL algorithms in safety en-
velopes. We can think of these patterns as the thinker and
doer human traits; where thinkers may adopt unsafe ideas,
but doers will restrain them to safe implementations.

For example, a computer vision based planning algorithm
for autonomous vehicles might generate a series of unsafe
manoeuvres or trajectories. However, safe executors will
benefit from other sensors to delay execution of a maneouver
or choose a different path in order to safely achieve the same
goals.

We find similar paradigms in reference architectures for
autonomous systems, where some components are respon-
sible for decisions and others for execution [17, 18]. While
no reflection is made about safety, any reference architecture
or design pattern can be adapted to safely incorporate
DL components by embedding some safety reasoning in
executors.

In such cases, simple safety mechanisms such as watch-
dogs or homogeneous redundancy will suffice to ensure
safe deployment of DL algorithms, on the cost of increased
complexity for executors. Some advantages of delegation are
the limited constraints imposed on the algorithms used and
the increased level of abstraction of executors, which makes
adapting or designing new patterns easier.

Partial Rejection of Safety Responsibility: The out-
put of DL algorithms is a probability distribution over a
set of possible outcomes together and a confidence score.
Therefore, a system can decide to reject the predictions or
to delay any decisions until it is confident enough. Similar

cases occur when partial properties of a DL system can be
formally verified.

For example, UAV operating at high altitudes can not
encounter birds or similar objects. This property can easily
be verified by checking the altitude (where altimeters corre-
sponds to classic safety critical systems). If such a prediction
is given by a sensing system, the system can decide to reject
it or take further actions (such as to trigger a fail safe mode).

These systems allow partial verification of the output
and small forms of heterogeneous redundancy, easing the
requirements on testing scenarios. Therefore, such systems
can hold partial safety responsibility.

Design patterns in this class can be similar to partial n-
self checking programming patterns, sanity checks or partial
fault detection [15]. One can imagine that simpler, formally
verifiable, algorithms can help verifying partial properties
of a more complex algorithm, thus leading to ensemble or
cascading redundancy. The advantage of partial rejection is
one can allow some uncertainty in a system, while imposing
relatively low constraints on the DL algorithms used.

Fully Acceptance of Safety Responsibility: In some
cases it will be impossible to allow any uncertainty in a
system. One can imagine an intelligent planning algorithm
for a spacecraft embarked in deep space exploration, where
communication to Earth takes a very long time. Any non-
verifiable properties of a component will most likely mark
it unusable and lead to new system designs.

In such cases the discussion about safety will be balanced
towards choosing a less powerful algorithm for which nec-
essary safety properties can be verified. The development
of some algorithms is driven by theoretical, mathematical,
grounds and not by empirical evidence (as in the case of
DL). Therefore, giving some guarantees for this family of
algorithms is possible. Whenever safety properties can be
verified and the algorithms fit functional requirements, the
safety patterns developed will be more similar to determin-
istic software.

However, formal verification or strong proofs will not
alleviate all the challenges raised in Section III. Software
architecture will still plays an important role in integrating
such algorithms in safety critical systems (and any other type
of software system). For example, the limited design space
of DL algorithms and the limited reasoning about systematic
faults can still be managed through software architecture
design. Moreover, fault detection and, particularly, fault
containment will have to be solved through architecture.

Although fully acceptance of safety responsibility brings
the design space closer to classic software components by
imposing strong requirements on the probabilistic algorithms
used (thus removing uncertainty), it is (at the moment)
almost impossible to achieve for complicated tasks.



V. RELATED WORK

There is little to no literature on the intersection between
safety architectural design, architectures for intelligent sys-
tems and safe ML. Although several reference architectures
for developing intelligent and autonomous systems, possibly
including DL components, have been proposed in robotics -
e.g. [17, 18, 19] - they do not take into consideration safety,
possible failures, or misbehaviour of any of the components.

At the other end, the development of safety architectural
patterns focused on deterministic systems and systems where
fault detection and correction or formal verification is pos-
sible [20, 15].

The only related work we are aware of is the work of
Salay and Czarnecki [21]. The authors assess the readiness
of ISO 26262 safety standard for ML components. The
standard section on software architecture design is reviewed,
however, the authors consider possible to check the output
of ML algorithms and detect possible data errors. This
statement is in contrast with recent research which shows
that detecting small perturbations applied to inputs is very
hard [6].

VI. CONCLUSIONS AND FUTURE RESEARCH

We consider the problem of integrating DL components
in safety critical software systems. Due to their opaque
nature and to high model complexity, DL algorithms raise
numerous challenges regarding system safety. We argue
software architecture design can mitigate some of these
challenges and enable faster development and deployment
of new technologies. In this paper we sketch three directions
for the development of architectural patterns that will help
mitigate some of these issues. However, no pattern is yet
presented.

For future work we propose to:
• Assess and adapt available architectural safety patterns

able to mitigate any of the issues raised earlier (or new
ones).

• Develop new patterns whenever adaptation is not pos-
sible.

• Build a system of safety architectural patterns for safety
critical systems using DL.

• Develop a framework to help reasoning about the safety
properties achieved when using these patterns and ease
the selection process (similar to architectural tactics).

REFERENCES

[1] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner,
B. Flepp, P. Goyal, L. D. Jackel, M. Monfort, U. Muller,
J. Zhang, et al., “End to end learning for self-driving cars,”
arXiv preprint arXiv:1604.07316, 2016.

[2] A. Rodriguez-Ramos, C. Sampedro, H. Bavle, P. de la Puente,
and P. Campoy, “A deep reinforcement learning strategy for
uav autonomous landing on a moving platform,” Journal of
Intelligent & Robotic Systems, pp. 1–16, 2018.

[3] D. Sarikaya, J. J. Corso, and K. A. Guru, “Detection and
localization of robotic tools in robot-assisted surgery videos
using deep neural networks for region proposal and detec-
tion,” IEEE transactions on medical imaging, vol. 36, no. 7,
pp. 1542–1549, 2017.

[4] International Organization for Standardization (ISO), “ISO
standard 26262:2011 Road vehicles - Functional safety,”
2011.

[5] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan,
I. Goodfellow, and R. Fergus, “Intriguing properties of neural
networks,” arXiv preprint arXiv:1312.6199, 2013.

[6] A. C. Serban and E. Poll, “Adversarial examples - a com-
plete characterisation of the phenomenon,” arXiv preprint
arXiv:1810.01185, 2018.

[7] K. R. Varshney and H. Alemzadeh, “On the safety of machine
learning: Cyber-physical systems, decision sciences, and data
products,” Big data, vol. 5, no. 3, pp. 246–255, 2017.

[8] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson,
and J. Carriere, “The architecture tradeoff analysis method,”
in IEEE ICECCS’98, pp. 68–78, IEEE, 1998.

[9] S. Shafaei, S. Kugele, M. H. Osman, and A. Knoll, “Un-
certainty in machine learning: A safety perspective on au-
tonomous driving,” in International Conference on Computer
Safety, Reliability, and Security, pp. 458–464, Springer, 2018.

[10] A. C. Serban, E. Poll, and J. Visser, “Tactical safety reasoning.
a case for autonomous vehicles.,” in IEEE 87th Vehicular
Technology Conference (VTC Spring), pp. 1–5, IEEE, 2018.

[11] L. Gauerhof, P. Munk, and S. Burton, “Structuring validation
targets of a machine learning function applied to automated
driving,” in International Conference on Computer Safety,
Reliability, and Security, pp. 45–58, Springer, 2018.

[12] A. K. Saberi, E. Barbier, F. Benders, and M. van den
Brand, “On functional safety methods: A system of systems
approach,” in Systems Conference (SysCon), 2018 Annual
IEEE International, pp. 1–6, IEEE, 2018.

[13] International Electrotechnical Commission, “IEC 615038
- Functional Safety of Electrical/Electronic/Programmable
Electronic Safety- Related Systems,” 1998.

[14] B. O’Connor, “NASA Software Safety Guidebook,” NASA
Technical Standard NASA-GB-8719.13, 2004.

[15] C. Preschern, N. Kajtazovic, and C. Kreiner, “Building a
safety architecture pattern system,” in European Conference
on Pattern Languages of Program, p. 17, ACM, 2015.

[16] W. Wu and T. Kelly, “Safety tactics for software architecture
design,” in COMPSAC, pp. 368–375, IEEE, 2004.

[17] J. S. Albus, “The NIST real-time control system (RCS): an
approach to intelligent systems research,” Journal of Exper-
imental & Theoretical Artificial Intelligence, vol. 9, no. 2-3,
pp. 157–174, 1997.

[18] E. Gat and R. P. Bonnasso, “On three-layer architectures,”
Artificial intelligence and mobile robots, vol. 195, p. 210,
1998.

[19] R. Volpe, I. Nesnas, T. Estlin, D. Mutz, R. Petras, and H. Das,
“The CLARAty architecture for robotic autonomy,” in IEEE
Aerospace Conference, vol. 1, pp. 121–132, IEEE, 2001.

[20] A. Armoush, Design patterns for safety-critical embedded
systems. PhD thesis, RWTH Aachen University, 2010.

[21] R. Salay and K. Czarnecki, “Using machine learning safely
in automotive software: An assessment and adaption of soft-
ware process requirements in ISO 26262,” arXiv preprint
arXiv:1808.01614, 2018.


