
A Standard Driven Software Architecture for Fully
Autonomous Vehicles

Alexandru Constantin Serban∗†, Erik Poll∗ and Joost Visser∗†
∗Radboud University, Nijmegen, The Netherlands

†Software Improvement Group, Amsterdam, The Netherlands,
Email: ∗{a.serban, erikpoll}@cs.ru.nl, †{a.serban, j.visser}@sig.eu

Abstract—The goal of this paper is to design a functional
software architecture for fully autonomous vehicles. Existing liter-
ature takes a descriptive approach and presents past experiments
with autonomous driving or implementations specific to limited
domains (e.g. winning a competition). The architectural solutions
are often an after-math of building or evolving an autonomous
vehicle and not the result of a clear software development life-
cycle. A major issue of this approach is that requirements
can not be traced with respect to functional components and
several components group most functionality. Therefore, it is
often difficult to adopt the proposals. In this paper we take
a prescriptive approach starting with requirements from an
automotive standard. We use a NIST reference architecture for
real-time, intelligent, systems and well established architectural
patterns to support the design principles. We further examine the
results with respect to the automotive software development life
cycle and compliance with automotive safety standards. Lastly,
we compare our work with other proposals.

Index Terms—Intelligent vehicles, Autonomous vehicles, Soft-
ware architecture

I. INTRODUCTION
Autonomous driving is no longer a lab experiment. As

manufacturers compete to raise the level of vehicle automation,
cars become highly complex systems. Driving task automation
is often regarded as adding a layer of cognitive intelligence
on top of basic vehicle platforms [1]. While traditional me-
chanical components become a commodity [2] and planning
algorithms become responsible for critical decisions, software
emerges as the lead innovation driver.

Since the amount of software grows, there is a need to use
advanced software engineering methods and tools to handle its
complexity, size and criticality. Software systems are difficult
to understand because of their non-linear nature; a one bit error
can bring an entire system down, or a much larger error may
do nothing. Moreover, many errors come from design flaws
or requirements specification [3].

Basic vehicles already run large amounts of software with
tight constraints concerning real-time processing, failure rate,
maintainability and safety. In order to avoid design flaws
or an unbalanced representation of requirements in the final
product, the software’s evolution towards autonomy must be
well managed. Since adding cognitive intelligence to vehicles
leads to new software components deployed on existing plat-
forms, a clear mapping between functional goals and software
components is needed.

This research was funded by NWO as part of the i-CAVE project.

Software architecture was introduced as a means to manage
complexity in software systems and help assess functional
and non-functional attributes, before the build phase. A good
architecture is known to help ensure that a system satisfies
key requirements in areas such as functional suitability, per-
formance, reliability or interoperability [4].

The goal of this paper is to design a functional software
architecture for fully autonomous vehicles. Existing literature
takes a descriptive approach and presents past experiments
with autonomous driving or implementations specific to lim-
ited domains (e.g. winning a competition). The architectural
solutions are often an after-math of building or evolving an
autonomous vehicle and not the result of a clear software
development life-cycle. A major issue of this approach is
that requirements can not be traced with respect to functional
components and several components group most functionality.
Therefore, without inside knowledge, it is often not straight
forward to adopt the proposals.

In this paper we take a prescriptive approach driven by
standard requirements. We use requirements from the Society
of Automotive Engineers (SAE) J3016 standard, which defines
multiple levels of driving automation and includes functional
definitions for each level. The goal of SAE J3016 is to provide
a complete taxonomy for driving automation features and the
underlying principles used to evolve from none to full driving
automation. At the moment of writing this paper, it is the
only standard recommended practice for building autonomous
vehicles.

The term functional architecture is used analogously to the
term functional concept described in the ISO 26262 automo-
tive standard [5, 1]: a specification of intended functions and
necessary interactions in order to achieve desired behaviors.
Functional architecture design corresponds to the second step
in the V-model [5, 6], a software development life cycle
imposed by the mandatory compliance with the ISO 26262
automotive standard.

We follow the methodology described by Wieringa [7] as the
design cycle; a subset of the engineering cycle which precedes
the solution implementation and implementation evaluation.
The design cycle includes designing and validating a solution
for given requirements.

The rest of this paper develops along the following lines. In
Section II we introduce background information. In Section
III we present the requirements and the reasoning process



that lead to a solution domain. The functional components are
introduced in Section IV, followed by component interaction
patterns in Section V and a general discussion in Section VI.
In Section VII we compare the proposal with related work and
conclude with future research in Section VIII.

II. BACKGROUND

The development of automotive systems is distributed be-
tween manufacturers – aka Original Equipment Manufacturers
(OEM) – and component suppliers. This leads to a distributed
software development life cycle, where the OEM often play the
role of technology integrators. The same distributed paradigm
applies to component distribution and deployment inside a
vehicle: embedded systems called Electronic Control Units
(ECU) are deployed in vehicles in order to enforce digital
control of functional aspects such as steering or brakes.

To understand the vehicle automation process, we first in-
troduce the most important terms as defined in SAE J3016 [8]:

• Dynamic Driving Task (DDT) - real-time operational and
tactical functions required to operate a vehicle, excluding
strategic functions such as trip scheduling or route plan-
ning. DDT is analogous to all processes needed to drive
a car on a given route.

• Driving automation system - hardware and software sys-
tems collectively capable of performing part or all of the
DDT on a sustained basis. Driving automation systems
are usually composed of design-specific functionality
called features.

• Operational Design Domains (ODD) - the specific con-
ditions under which a given driving automation system
or feature is designed to function.

• DDT feature - a design-specific functionality at a specific
level of driving automation with a particular ODD.

Besides hardware constraints, full vehicle automation involves
DDT automation in all ODDs, by developing a driving au-
tomation system. Recursively, driving automation systems are
composed of design-specific features. In this sense, complete
vehicle automation is regarded as developing, deploying and
orchestrating enough DDT features in order to satisfy all
conditions (ODD) in which a human driver can operate a
vehicle.

The transfer of total control from humans to machines is
classified by the SAE as a stepwise process on a scale from
0 to 5, where 0 involves no automation and 5 means full-time
performance by an automated driving system of all driving
aspects, under all roadway and environmental conditions [8].

The classification is meant to clarify the role of a human
driver, if any, during vehicle operation. The first discriminant
condition is the environmental monitoring agent. In the case
of no automation up to partial automation (levels 0-2), the
environment is monitored by a human driver, while for higher
degrees of automation (levels 3-5), the vehicle becomes re-
sponsible for environmental monitoring. Another discriminant
criteria is the responsibility for DDT fall-back mechanisms.
For low levels of automation (0-3) a human driver needs to

take control in case of a system fall, while for levels 4-5 a
human is no longer needed.

III. REQUIREMENTS AND RATIONALE

The process of functional architecture design starts by devel-
oping a list of functional components and their dependencies
[3]. Towards this end, SAE J3016 defines three classes of
components:

• Operational - basic vehicle control,
• Tactical - planning and execution for event or object

avoidance and expedited route following, and
• Strategic - destination and general route planning.

Each class of components has an incremental role in a
hierarchical control structure which starts from low level
control, through the operational class and finishes with a high
level overview through the strategic class of components. In
between, the tactical components handle trajectory planning
and response to traffic events.

Later, the SAE definition for DDT specifies, for each class,
the functionality that must be automated in order to reach full
autonomy (level 5):

• Lateral vehicle motion control via steering (operational).
• Longitudinal vehicle control via acceleration and decel-

eration (operational).
• Monitoring of the driving environment via object and

event detection, recognition, classification and response
preparation (operational and tactical).

• Object and event response execution (operational and
tactical).

• Maneuver planning (tactical).
• Enhanced conspicuity via lighting, signaling and gestur-

ing, etc. (tactical).
Moreover, an autonomous vehicle must ensure DDT fall-back
and must implement strategic functions, not specified in the
DDT definition. The latter consists of destination planning
between two points provided by a human user.

The automation of a task resembles a control loop which
receives input from sensors, performs some reasoning and con-
trols vehicle behavior through actuators [9]. The automation
of complex tasks requires a deeper (semantic) understanding
of sensor data in order to generate higher order decisions or
plans. However, the loop behavior is preserved. The analogy
holds for the SAE classification of functional components,
where components falling in the operational class require less
complicated semantics to reason upon sensor data and perform
vehicle control, while tactical and strategic components require
in depth understanding of the vehicle surroundings through
object and event recognition in order to generate high level
plans and decisions.

Architecture design for autonomous vehicles is analogous to
the design of a real-time, intelligent, control system. There is
considerably literature from the fields of robotics and artificial
intelligence which puts forward reference architectures for
such systems [10, 11, 12, 13, 14, 15, 16]. The proposals
revolve around behavior or knowledge based systems, where



knowledge-based systems maintain an internal state of the
environment and behavior-based systems do not [10].

On the same path, the literature distinguishes between
deliberative and reactive systems, where deliberative systems
reason upon an internal representation of the environment
and reactive system fulfill goals through reflexive reactions
to environment changes [12, 13, 14, 15].

However, an architecture for autonomous vehicles must be
capable to represent both reactive and deliberative components
in a single artifact, so it can both plan for the future and
react, in the least of time, to unexpected events. In both
cases, the use of internal state must be minimized as much as
possible, towards an increase in performance and efficiency.
One of the most popular reference architectures to propose
a balance between reactive and deliberative components was
introduced by Gat et al. [12]. Here, the functional components
are classified based on their memory and knowledge about
the internal state in: no knowledge, knowledge of the past, or
knowledge of the future. However, the model does not specify
how, or if, the knowledge can be shared between components
and if one component can hold knowledge about both the past
and the future.

A better proposal, that bridges the gap between reactive
and deliberative components, is the NIST Real Time Control
Systems (RCS) reference architecture by Albus [11]. This
architecture does not separate components based on memory,
but builds a hierarchy based on semantical knowledge. Thus,
components lower in the hierarchy have limited semantic
understanding and can generate inputs for higher components,
deepening their semantic knowledge and understanding. This
makes RCS a better mapping on the SAE classification of
functional components discussed in Section III. Moreover,
RCS has no temporal limitations for a component’s knowl-
edge. One can hold static or dynamic information about past,
present or future. We select this reference architecture as a
baseline for our proposal because of its ability to describe
both the autonomous vehicle as a whole and the individual
driving automation features.

At the heart of the RCS control loop is a representation
of the external world, the world model, which provides a
site for data fusion, acts as a buffer between perception and
behavior, and supports both sensory processing and behavior
generation. Sensory processing performs the functions of win-
dowing, grouping, computation, estimation, and classification
on input from sensors. World modeling maintains knowledge
in the form of images, maps, events or relationships between
them. Value judgment provides criteria for decision making.
Behavior generation is responsible for planning and execution
of behaviors [11].

Albus proposed the design for a node in a hierarchical con-
trol structure, where perception at lower level nodes generates
inputs for higher level nodes, thus increasing the level of
abstraction and cognition. However, in the automotive context
it, is not always a requirement for lower node’s output to
be input of higher nodes. It may be that nodes at different
hierarchical levels process the same sensor data. Moreover,

low level control loops such as longitudinal or lateral control,
which need basic sensor input to execute their tasks, need no
world modeling capacity. Their structure is thus reduced to
flat, simple, control loops with multiple processing steps (e.g.
noise filtering, data comparison).

From an architectural point of view, a flat stream of data
which passes through different, individual, processing steps
can be represented as a pipe-and-filter pattern [17]. The pattern
divides a process into several sequential steps, connected by
the data flow - the output data of a step is the input to the
subsequent step. Each processing step is implemented by a
filter component.

In its pure form, the pipe-and-filter pattern can only repre-
sent sequential processes. For hierarchical structures, a variant
of the pattern, called tee-and-join pipeline, is used [17]. In this
paradigm, the input from sensors is passed either to a low level
pipeline corresponding to a low level control loop, to a higher
level pipeline, or both.

An alternative to the chosen architectural style is a
component-based architecture. This style specifies that all
components can be interchangeable and independent of each
other. While it is a popular choice for functional software
architecture description [3], it reveals no information about
functional hierarchies. Another alternative, the layered archi-
tectural style, would limit component communication because
the commands have to flow strictly from the higher layer to
the lower one, thus grouping all decisions at a layer.

IV. FUNCTIONAL COMPONENTS

We start by introducing the functional components and, in
Section V, discuss interaction patterns. Figure 1 depicts the
functional components that satisfy SAE J3016 requirements
for fully autonomous vehicles. The data flows from left to
right; from the sensors abstraction to actuator interfaces, sim-
ulating a closed control loop. The figure represents three types
of entities: functional components (blue boxes), classes of
components (light gray boxes), and sub-classes of components
(dark gray boxes).

The proposal maps onto the SAE classification of functional
components, introduced in Section II, in the following way:
vehicle control and actuators interface class of components
correspond to SAE operational functions, the planning class
of components corresponds to SAE tactical functions, and the
behavior generation class maps to both strategic and planning
class of functions.

It is an instantiation of the RCS reference architecture where
the sensors abstraction and sensor fusion classes map to RCS
sensor processing, the world modeling contains the real time
knowledge data analogous to the world modeling component
in RCS and the behavior generation, planning, vehicle control
and actuators interface classes map to the behavior generation
module in RCS.

Two orthogonal classes, corresponding to data management
and system and safety management, are depicted because they
represent cross-cutting concerns: data management compo-
nents implement long term data storage and retrieval, while



system and safety management components act in parallel of
normal control loops and represent DDT fall-back mechanisms
or other safety concerns.

In the following subsections each class of filters is discussed
together with its components. The last sub-section discusses
the relation with middle-ware solutions and AUTOSAR.

A. Sensor Abstractions

Sensor abstractions provide software interfaces to hardware
sensors, possible adapters and conversion functionality needed
to interpret the data. We distinguish two classes of sensors
and, respectively, of abstractions: (1) sensors that monitor the
internal vehicle state or dynamic attributes (inertial measure-
ments, speed, etc.) and (2) sensors that monitor the external
environment as required by the SAE requirements.

Environmental monitoring can be based on RADAR, LI-
DAR and camera technologies. In the case of cooperative
driving, communication with other traffic participants is real-
ized through vehicle-to-everything (V2X). Global positioning
(GPS) is required to localize the vehicle in a map environment
or to generate global routes and is therefore represented as a
separated functional component.

All abstractions concerning the internal vehicle state are
grouped into one functional component, because the choice is
specific to each OEM.

B. Sensor Fusion

Multi-sensor environments generate large volumes of data
with different resolutions. These are often corrupted by a
variety of noise and clutter conditions which continually
change because of temporal changes in the environment.
Sensor fusion combines data from different, heterogeneous,
sources to increase accuracy of measurements.

The functional components are chosen with respect to SAE
requirements for object and event detection, recognition, and
classification. We distinguish between static and dynamic
objects (e.g. a barrier, pedestrians) and road objects (e.g.
traffic lights) because they have different semantic meaning.
Moreover, local positioning is needed to position the vehicle
relative to the identified objects and global positioning is
needed for strategic functionality.

Through sensor fusion, a processing pipeline gathering
information from various sensors such as RADAR and camera
can be used to classify an object, determine its speed, and
add other properties to its description. The distinction between
the external environment and the internal state of a vehicle is
preserved in Figure 1: the first four components process data
related to the external environment, while the internal state is
represented by the last functional component.

C. World Model

The world model represents the complete picture of the
external environment as perceived by the vehicle, together
with its internal state. Data coming from sensor fusion is
used together with stored data (e.g. maps) in order to create a
complete representation of the world.

As in RCS architecture, the world model acts as a buffer
between sensor processing and behavior generation. Compo-
nents in this class maintain knowledge about images, maps,
entities and events, but also relationships between them. World
modeling stores and uses historical information (from past
processing loops) and provides interfaces to query and filter
its content for other components. These interfaces, called data
sinks, filter content or group data for different consumers in
order to reveal different insights. One example heavily used in
the automotive industry is the bird’s eye view. However, the
deployed data sinks remain OEM-specific.

D. Behavior Generation

Behavior generation is the highest cognitive class of func-
tions in the architecture. Here, the system generates predictions
about the environment and the vehicle’s behavior. According
to the vehicle’s goals, it develops multiple behavior options
(through behavior generation) and selects the best one (behav-
ior selection). Often, the vehicle’s behavior is analogously to a
Finite State Machine (FSM). The behavior generation module
develops a number of possible state sequences from the current
state and the behavior reasoning module selects the best
alternative. Complex algorithms from Reinforcement Learning
(RL) use driving policies stored in the knowledge database to
reason and generate a sequence of future states. Nevertheless,
the functional loop is consistent: at first a number of alternative
behaviors are generated, then one is selected using an objective
function (or policy).

A vehicle’s goal is to reach a given destination without
any incident. When the destination changes (through a Human
Machine Interface (HMI) input), the global routing component
will change the goal and trigger new behavior generation.
These components correspond to the SAE strategic functions.

E. Planning

The planning class determines each maneuver an au-
tonomous vehicle must execute in order to satisfy a chosen
behavior. The path planning and monitoring component gen-
erates an obstacle free trajectory and composes the trajectory
implementation plan from composition functions deployed on
the vehicle. It acts like a supervisor which decomposes tasks,
chooses alternative methods for achieving them, and monitors
the execution. The need to re-use components across vehicles
or outsource the development leads the path to compositional
functions. Examples of such functions are: lane keeping sys-
tems or automated parking systems (all, commercial of-the-
shelf deployed products). Compositional functions represent
an instantiation of the RCS architecture; they receive data
input from sensor fusion or world modeling through data sinks,
judge its value and act accordingly, sending the outputs to
vehicle control. Path planning and monitoring act as orches-
trators which decide what functions are needed to complete
the trajectory and coordinate them until the goal is fulfilled or
a new objective arrives. For vehicles up and including level
4, which cannot satisfy full autonomous driving in all driving
conditions, the control of the vehicle must be handed to a



Fig. 1: Proposed functional architecture, part I: functional components.

trained driver in case a goal can not be fulfilled. Therefore,
this class includes a driving alert HMI component.

F. Vehicle Control

Vehicle control is essential for guiding a car along the
planned trajectory. The general control task is divided into
lateral and longitudinal control, reflecting the SAE require-
ments for operational functions. This allows the control system
to independently deal with vehicle characteristics (such as
maximum allowable tire forces, maximum steering angles,
etc.) and with safety-comfort trade-off analysis. The trajec-
tory control block takes a trajectory (generated at the path
planning and monitoring level) as input and controls the
lateral and longitudinal modules. The trajectory represents
a future desired state given by one of the path planning
compositional functions. For example, if a lane-change is
needed, the trajectory will represent the desired position in
terms of coordinates and orientation, without any information

about how the acceleration, steering or braking will be per-
formed. The longitudinal control algorithm receives the target
longitudinal state (such as brake until 40 km/h) and decides if
the action will be performed by accelerating, braking, reducing
throttle, or using the transmission module (i.e. engine braking).
The lateral control algorithm computes the target steering
angle given the dynamic properties of a vehicle and the target
trajectory. If the trajectory includes a change that requires
signaling, the communication mechanisms will be triggered
through the intention communication module.

G. Actuator Interfaces

The actuator interface modules transform data coming from
vehicle control layer to actuator commands. The blocks in
Figure 1 represent the basic interfaces for longitudinal and
lateral control.



H. Data Management

Autonomous vehicles handle huge amounts of data. In spite
of the fact that most data requires real-time processing, per-
sistence is also needed. These concerns are represented using
the data management class of components. Global localization
features require internal maps storage; intelligent decision
and pattern recognition algorithms require trained models
(knowledge database); internal state reporting requires ad-
vanced logging mechanisms (logging database). The logging-
report databases are also used to store data needed to later
tune and improve intelligent algorithms. Moreover, an audit
database keeps authoritative logs (similar to black boxes in
planes) that can be used to solve liability issues. In order to
allow dynamic deployable configurations and any change in
reference variables (e.g. a calibration or a decisional variable)
a value reference database is included.

I. System and Safety Management

The system and safety management block handles func-
tional safety mechanisms (fault detection and management)
and traffic safety concerns. It is an instantiation of the sep-
arated safety pattern [18] where the division criteria split
the control system from the safety operations. Figure 1 only
depicts components that spot malfunctions and trigger safety
behavior (internal state monitor, equivalent to a watch dog),
but not redundancy mechanisms. The latter implement partial
or full replication of functional components. Moreover, safety
specific functions deployed by the OEM to increase traffic
safety are distinctly represented. At this moment they are an
independent choice of each OEM.

As the level of automation increases, it is necessary to take
complex safety decisions. Starting with level 3, the vehicle be-
comes fully responsible for traffic safety. Therefore, algorithms
capable of full safety reasoning and casualty minimization
are expected to be deployed. While it is not yet clear how
safety reasoning will be standardized and implemented in
future vehicles, such components will soon be mandatory [19].
An overview of future safety challenges autonomous vehicles
face is illustrated in [20]. With respect to the separated safety
pattern, in Figure 1 safety reasoning components are separated
from behavior generation.

J. AUTOSAR (AUTOSAR) Context

AUTOSAR is a consortium between OEMs and component
suppliers which supports standardization of the software in-
frastructure needed to integrate and run vehicle’s software.
This paper does not advocate for or against AUTOSAR.
The adoption and use of AUTOSAR is OEM-specific. In the
AUTOSAR context, the functional components in Figure 1
represent AUTOSAR software components. The interfaces
between components can be specified through AUTOSAR’s
standardized interface definitions.

V. INTERACTION BETWEEN COMPONENTS

As mentioned in Section III, the components in Figure 1
act as a hierarchical control structure, where the level of

Fig. 2: Proposed functional architecture, part II: hierarchical
control structure using tee-and-join pipelines pattern.

Fig. 3: Proposed functional architecture, part III: component
interaction at class level. The behavior generation process.

abstraction and cognition increases with the hierarchical level,
mapping on the SAE classification of functional components.
Components lower in the hierarchy handle less complex tasks
such as operational functions, while higher components han-
dle planning and strategic objectives (e.g. global routing or
trajectory planning).

We propose the use of pipe-and-filter pattern for component
interactions in flat control structures (same hierarchical level)
and the use of tee-and-join pipelines to represent the hierarchy.
In a hierarchical design, lower level components offer services
to adjacent upper level components. However, the data inputs
are often the same. A high level representation of the system,
through the tee-and-join pipelines pattern is illustrated in
Figure 2. The gray boxes represent processing pipelines and
the blue ones represent components classes.

For each component class, a process is analogous to a
pipeline. As example, once a user communicates a final desti-
nation, the behavior generation process starts. This example is
illustrated in Figure 3, where upon receiving a destination at
the HMI input filter, the global routing filter forwards a route
to the behavior generation filter. This filter breaks down the
route in actions that have to be taken by the vehicle in order



to reach the destination. The actions are analogous to states
in a FSM. Often, there are several paths between two states.
Further on, the behavior selection component will select the
best path between two states and forward it to the planning
process.

Moreover, messages received at component level have to
be prioritised. For example, an actuator interface can receive
commands from the longitudinal control component or a safety
specific function (e.g. emergency braking). In order to decide
which command to execute first, the messages must contain
a priority flag. Since this functionality is dependent on the
component’s interface and specific to OEM, this discussion is
limited.

VI. DISCUSSION

Software architecture evaluation is an expert-driven process,
based on scenario evaluation and requirements tracing with
respect to stakeholder concerns [21]. This process evaluates
both the functional suitability of an architecture and non
functional properties such as performance or maintainability
[22]. In this paper we are only interested in functional suit-
ability and completeness with respect to SAE J3016 require-
ments. However, we further discuss two important aspects:
the position of the proposed architecture with respect to (1)
the automotive software development life cycle and (2) the
ISO 26262 standard that regulates functional safety. Later, in
Section VII, we provide a comparison with existing literature.
Expert based validation is the subject of our future study and
is meant to reflect non functional properties of the proposal.

A. Incremental development and component reuse

The SAE classification presented in Section II shows an
incremental transition from partially automated to fully au-
tonomous vehicles. The functional division of software com-
ponents should respect this incremental transition. Moreover,
the OEM software development life-cycle and preference for
outsourcing must be taken into account.

As mentioned in Section II, DDT automation is analogous
to deploying and orchestrating enough driving automation
features in order to satisfy all driving conditions (ODD) in
which a human can drive. This assumption employs two
development paths:

1) the deployment of new software components specific to
new DDT features or

2) updating a driving feature with enhanced functionality.
In Figure 1, new DDT features represent new compositional

functions specific to path planning. The use of composition
functions enables incremental and distributed development
at the cost of increased complexity for path planning and
monitor. These components can be commercial-of-the-shelf
products that can easily be outsourced to tier one suppliers.

Behavior generation improvements are solved through
knowledge database updates. The V2X component interfaces
with the external world, therefore, updates can be pushed
through this component. In most cases, the updates will target
the knowledge or value reference databases.

B. Functional safety

The automotive industry has high functional safety con-
straints imposed by the mandatory adherence to ISO 26262
[5]. The objective of functional safety is to avoid any injuries
or malfunctions of components in response to inputs, hardware
or environmental changes. Error detection and duplication of
safety critical components are mechanisms suggested by ISO
26262. In this proposal, we represent the functional component
specific to error detection, however, omit to represent any
redundancy or duplicated components.

We also aim to fulfill a gap in the ISO 26262 standard,
with regards to autonomous vehicles: safety reasoning [20].
To this moment it is not clear how autonomous vehicles will
behave in case an accident can not be avoided and which
risk to minimize. However, it is expected for future safety
standards to include specification for safety behavior. Towards
this end, the proposed architecture features a safety reasoning
component.

VII. RELATED WORK

We focus on literature proposing functional and reference
architectures starting with level 3, since level 2 vehicles only
automate lateral and longitudinal control. A historical review
of level 2 systems is presented in [23].

The only reference architecture for fully autonomous (level
5) vehicles was introduced by Behere et al. [1]. In this pro-
posal, the authors make a clear distinction between cognitive
and vehicle platform functionality, similar to the classification
in tactical and operational SAE classes. The decision and con-
trol block [1] is responsible for trajectory reasoning, selection
and implementation, equivalent to the behavior generation and
planning class of components from Figure 1. Yet it is not clear
how this block handles all functionality, leading to a rough
representation of functional classes. It is also interesting to
observe that HMI components are ignored.

Other work in this field focused primarily on systems devel-
oped for autonomous driving competitions or other constrained
experiments. Introducing a project which attended one of the
first competitions organized by DARPA, Montmerlo et al.
[24] show a layer-based architectural model based on sensor
interface, perception, navigation, user and vehicle interfaces.
In this model localization features are embedded in perception
together with laser object detection. No object recognition or
classification was needed in this competition. The model rep-
resents operational and tactical functions through navigation
components, but excludes strategic functions.

Jo et al. [25, 26] present their experience from an au-
tonomous vehicle competition held in Korea. The proposal
comes one step closer to a general architecture, given broader
competition goals. The model contains sensor abstractions, fu-
sion, behavior and path planning, vehicle control and actuator
interfaces. In this regard, it represents similar concerns to Fig-
ure 1, without world modeling and HMI route inputs. Instead,
the behavior planning component integrates data coming from
sensors in order to generate an execution plan. Since the goal
of the competition was limited, both localization and behavior



reasoning components are restricted (a finite state machine
with only 8 possible states that can stop for a barrier, detect
split road, etc.). The artifact successfully represents operational
and tactical functions. Moreover, Jo et al. divide, for the first
time, the concerns from behavior and from path planning, thus
obtaining several levels of cognition and control. The study
also reveals important details for in-vehicle ECU deployment
and a mapping to AUTOSAR.

An important contribution from industry research is the
work of Ziegler et al. [27] at Mercedes Benz. Although its
purpose is not to introduce a general functional architecture,
the system overview reveals similar functional requirements. It
features object recognition, localization, motion planning and
vehicle control, analogous to behavior generation, planning
and vehicle control in Figure 1. Once again, the concerns
for behavior generation are separated from path and trajec-
tory planning, and grouped under motion planning. Another
important contribution is the representation of data storage
functionality for digital maps and reactive components such
as emergency braking.

Overall, we observe two approaches in the literature: (1)
a high level overview of system components or (2) proofs-
of-concept from experiments with autonomous features or
competition with limited operational domain. This paper takes
one step further and considers a fine-grained functional decom-
position with respect to the automotive software development
life cycle. Moreover, data concerns are central to the proposal,
both for long term storage and fast update of reasoning and
cognitive models. We advocate advanced logging mechanisms
with specific architectures and data models that can help in
fast identification of malfunctions and could be later used to
improve learning algorithms.

VIII. CONCLUSIONS AND FUTURE RESEARCH

We have presented a functional software architecture for
fully autonomous vehicles. Since the automotive industry is
highly standardized, we follow the functional requirements
from an automotive standard which defines multiple levels of
driving automation and includes functional definitions for each
level. During the architecture design, we aim to respect the
incremental development process of autonomous vehicles and
the distributed software development process specific to the
automotive industry. The final artifact represents an automotive
specific instantiation of the NIST RCS reference architecture
for real-time, intelligent, control systems. We use the pipe-and-
filter architectural pattern for component interaction and the
tee-and-join pipeline pattern to represent a hierarchical control
structure. Software architecture evaluation is often an expert-
driven process. One downside of our methodology is that we
do not call for expert validation. Future work includes, at first,
refinement through expert opinion. Later steps consider com-
ponent interface design, a choice for hardware architecture,
functional component distribution across ECUs, component
distribution inside local networks in order to satisfy security
requirements and an instantiation in the i-CAVE project.

REFERENCES

[1] S. Behere and M. Törngren, “A functional reference architecture for
autonomous driving,” Information and Software Technology, vol. 73,
pp. 136–150, 2016.

[2] M. Broy, “Challenges in automotive software engineering,” in Interna-
tional Conference on Software Engineering (ICSE’06), pp. 33–42, ACM,
2006.

[3] M. Staron, Automotive Software Architectures, vol. 1. Springer Interna-
tional Publishing, 2017.

[4] D. Garlan, “Software architecture: a roadmap,” in Conference on The
Future of Software Engineering (ICSE’00), pp. 91–101, ACM, 2000.

[5] International Organization for Standardization (ISO), “ISO standard
26262:2011 Road vehicles - Functional safety,” 2011.

[6] N. B. Ruparelia, “Software development lifecycle models,” ACM SIG-
SOFT Software Enginering Notes, vol. 35, no. 3, pp. 8–13, 2010.

[7] R. Wieringa, “Design science methodology: principles and practice,” in
International Conference on Software Engineering (ICSE’10), pp. 493–
494, ACM, 2010.

[8] Society of Automotive Engineers (SAE), “J3016,” SAE international
taxonomy and definitions for terms related to on-road motor vehicle
automated driving systems,” levels of driving automation, 2014.

[9] R. Horowitz and P. Varaiya, “Control design of an automated highway
system,” Proceedings of the IEEE, vol. 88, no. 7, pp. 913–925, 2000.

[10] P. Maes, “Behavior-based artificial intelligence,” in Proceedings of the
Fifteenth Annual Meeting of the Cognitive Science Society, pp. 74–83,
1993.

[11] J. S. Albus, “The NIST real-time control system (RCS): an approach
to intelligent systems research,” Journal of Experimental & Theoretical
Artificial Intelligence, vol. 9, no. 2-3, pp. 157–174, 1997.

[12] E. Gat and R. P. Bonnasso, “On three-layer architectures,” Artificial
intelligence and mobile robots, vol. 195, p. 210, 1998.

[13] N. Muscettola, G. A. Dorais, C. Fry, R. Levinson, and C. Plaunt, “Idea:
Planning at the core of autonomous reactive agents,” in NASA Workshop
on Planning and Scheduling for Space, 2002.

[14] K. Konolige, K. Myers, E. Ruspini, and A. Saffiotti, “The Saphira archi-
tecture: A design for autonomy,” Journal of Experimental & Theoretical
Artificial Intelligence, vol. 9, no. 2-3, pp. 215–235, 1997.

[15] R. Volpe, I. Nesnas, T. Estlin, D. Mutz, R. Petras, and H. Das,
“The CLARAty architecture for robotic autonomy,” in IEEE Aerospace
Conference, vol. 1, pp. 121–132, IEEE, 2001.

[16] “An architectural blueprint for autonomic computing,” tech. rep., IBM,
2006. White paper. Fourth edition.

[17] F. Buschmann, K. Henney, and D. C. Schmidt, Pattern-oriented Software
Architecture, vol. 5. John Wiley & Sons, 2007.

[18] J. Rauhamäki, T. Vepsäläinen, and S. Kuikka, “Functional safety system
patterns,” in Proceedings of VikingPLoP, Tampere University of Tech-
nology, 2012.

[19] J.-F. Bonnefon, A. Shariff, and I. Rahwan, “The social dilemma of
autonomous vehicles,” Science, vol. 352, no. 6293, 2016.

[20] A. Serban, E. Poll, and J. Visser, “Tactical safety reasoning. a case for
autonomous vehicles.,” Proceedings of Ca2V Workshop, 2018.

[21] R. Kazman, G. Abowd, L. Bass, and P. Clements, “Scenario-based
analysis of software architecture,” IEEE Software, vol. 13, no. 6, pp. 47–
55, 1996.

[22] L. Dobrica and E. Niemela, “A survey on software architecture analysis
methods,” IEEE Transactions on Software Engineering, vol. 28, no. 7,
pp. 638–653, 2002.

[23] A. Khodayari, A. Ghaffari, S. Ameli, and J. Flahatgar, “A historical re-
view on lateral and longitudinal control of autonomous vehicle motions,”
ICMET, pp. 421–429, 2010.

[24] M. Montemerlo, J. Becker, S. Bhat, et al., “Junior: The Stanford entry in
the urban challenge,” Journal of Field Robotics, vol. 25, no. 9, pp. 569–
597, 2008.

[25] K. Jo, J. Kim, D. Kim, C. Jang, and M. Sunwoo, “Development of
autonomous car - part I,” IEEE Transactions on Industrial Electronics,
vol. 61, no. 12, pp. 7131–7140, 2014.

[26] K. Jo, J. Kim, D. Kim, C. Jang, and M. Sunwoo, “Development of
autonomous car - part II,” IEEE Transactions on Industrial Electronics,
vol. 62, no. 8, pp. 5119–5132, 2015.

[27] J. Ziegler, P. Bender, M. Schreiber, H. Lategahn, T. Strauss, C. Stiller,
T. Dang, U. Franke, N. Appenrodt, C. G. Keller, et al., “Making Bertha
drive - an autonomous journey on a historic route,” IEEE ITS Magazine,
vol. 6, no. 2, pp. 8–20, 2014.


	INTRODUCTION
	Background
	Requirements and Rationale
	Functional Components
	Sensor Abstractions
	Sensor Fusion
	World Model
	Behavior Generation
	Planning
	Vehicle Control
	Actuator Interfaces
	Data Management
	System and Safety Management
	AUTOSAR Context

	Interaction between Components
	Discussion
	Incremental development and component reuse
	Functional safety

	Related work
	Conclusions and future research
	References

