Tactical Safety Reasoning. A case for autonomous vehicles CA2V 2018

> Alexandru C. Serban^{1,2} Erik Poll¹ Joost Visser²

¹Radboud University, Nijmegen

²Software Improvement Group, Amsterdam

The Netherlands

03.06.2018

Traffic safety in a nuthshell

Safety concerns are divided between:

- Car manufacturers functional safety - ISO 26262
- Drivers [tactical?] safety

Functional safety - risk management

ISO 26262 sees safety as a *functional property* of a system and enforces safe operation in response to *inputs*, *hardware failures* or *environmental changes*.

 $\textit{Risk}_{\textit{component}} = \textit{Severity} \times (\textit{Exposure} \times \textit{Controllability})$

Driver/Tactical safety?

Progressively removing the driver

Alexandru C. Serban - Tactical Safety Reasoning

Progressively removing the driver

 Step 1 - The vehicle monitors the environment.

Progressively removing the driver

- Step 1 The vehicle monitors the environment.
- Step 2 The vehicle is responsible for all safety fall-back mechanisms.

Tactical safety¹

Definition

Safe planning and execution of driving manoeuvres, response to traffic events and dynamic driving task fall-back.

¹Tactical safety is meant to complement functional safety and not replace it

Tactical safety requirements

Sensors threat to safety

Small perturbations of inputs for computer vision algorithms cause miss-classification with high confidence intervals [1].

Sensors threat to safety

Small perturbations of inputs for computer vision algorithms cause miss-classification with high confidence intervals [1]. Source of perturbations: sensor wear, malicious attacks, algorithms non-determinism, etc.

Safety objectives?

We can not specify all traffic situations. So a car will have to *reason* about a new situation.

Safety objectives?

We can not specify all traffic situations. So a car will have to *reason* about a new situation.

What happens when an accident can not be avoided?

Safety objectives?

We can not specify all traffic situations. So a car will have to *reason* about a new situation.

What happens when an accident can not be avoided?

How about standard safety objectives?

Safety fall-back means?

"Does your car have any idea why my car pulled it over?"

Tactical safety requirements

SAE	Functional Requirements	Tactical requirements
Level	_	_
3	Runtime hazard identification & mitigation	Error resilient algorithms for environmental monitoring; Standard safety objectives; Methods to prove correct safety reasoning in limited ODDs; Decision to transfer control; Standard & provable transfer time;
4	Runtime hazard identification & mitigation	DDT fall-back reasoning; Standard DDT fall-back objectives; Methods to prove correct DDT fall-back reasoning;
5	Runtime hazard identification & mitigation	Enhanced context awareness; Advanced methods to prove correct safety reasoning in all contexts;

How this tech will work safely is still ambiguous

- How this tech will work safely is still ambiguous
- It's clear that new regulations and standards are needed

- How this tech will work safely is still ambiguous
- It's clear that new regulations and standards are needed
- We outline an *initial* definition and basic requirements for *tactical* safety

- How this tech will work safely is still ambiguous
- It's clear that new regulations and standards are needed
- We outline an *initial* definition and basic requirements for *tactical* safety
- And provide insights into new research directions

Thank you for your attention. Questions?

References I

Christian Szegedy et al. "Intriguing properties of neural networks". In: *arXiv preprint arXiv:1312.6199* (2013).