GraphRepo:
Fast Exploration in
Software Repository Mining

Alex Serban, Magiel Bruntink, Joost Visser

-y
%E $13 liacs

Software Repository Mining

- analyse the data available in software repositories, such as version control repositories, bug tracking systems, etc., to
uncover interesting and actionable information about software systems

- Examples of tasks:

- Commit analysis — analyse the type of commits (e.g., bug solving, new features, etc.)

- Coupled change analysis — analyse which modules are changed together (e.g., files, methods)
- Code search — source code search engines

- Programs translation — convert one program from a language to another

- etc.

Typical Repository Mining Workflow

I
- Define the information one is seeking (e.g., - Whenever new questions arise, the
some research questions) information has to be extracted again from

repositories
- Select a number of repositories to analyse

- The information extraction process is costly
- Extract the information needed and further

process it

GraphRepo extracts and inserts the code
related information from repos in Neo4;j

This allows real time exploration (e.g.,
answer new questions fast), scalability and
data sharing and reuse (e.g., with snapshots)

GraphRepo also provides a large set of
interfaces with the Python ecosystem (for
interoperability), e.g., with PySpark or Scikit-
Learn

GraphRepo: Fast Exploration in Repository Mining

The advantage is that once the data is
indexed, it can be queried in real time

GraphRepo is suitable for scenarios:

- where the same repositories are
reused for multiple analyses,

- where the data has to be updated
continuously (freshness) and
maintained consistent

- where real time exploration s
desired

GraphRepo Architecture

I
Map records to
Mappers provide a way to further process Othe’f"let”(‘;tzr(‘;fr-t’ csv),
the data (e.g., convert it to other formats) or) Mine
. . Mappers
interoperate with other frameworks (e.g., Manager
PySpark) T
Miners are default components to query the Commit Developer File Method
data in Python. They include default queries Miner Miner Miner Miner
and can be extended easily T T T T
Select Records

Drillers parse data from repositories and Ty Ty 40
index it in Neo4j. They also provide various) ! Git <“——— Cache —> Drillers <«—> \ '4. §

H 1 i : eo4]

caching mechanisms i Repo. ; Extract {(Optional); ')
Teeees © Data ----- ’ Records "

Graph Schema

The schema is generic and contain the 4 Parent
universally available entities in repos:
Developers, Commits, Files and Methods

Additionally we represent branches as nodes

to allow faster selection by branch (although
this info. can not always be reconstructed)

BranchCommit UpdateFile

¢
g
(£
2
S
%

Joyany

The update relationships hold metadata
about the updates, e.g., the #loc added or
removed, the source code before and after Developer]
the update, the method complexity after

updates, etc.

All repos are indexed in the same database.
This allows the analysis of teams of
developers working on multiple projects

Benchmarks

Table 1: Project details, where the number of nodes and relationships for each project is extracted from Neo4j.

ID Name Technologies Start - End Dates #Devs. #Commits #Files #Methods #Nodes #Relationships
P1 Hadoop Java 01.01.2018 - 01.01.2019 107 2359 6613 43817 52897 127837
P2 Jax Python 01.01.2019 - 01.05.2020 182 3721 299 7963 12166 42640
P3 Kibana Java/Javascript 01.06.2018 - 01.06.2019 232 5826 26827 15227 48113 130642
P4 Tensorflow C++/Python/Go 01.12.2019 - 01.05.2020 568 11403 11549 51335 74856 213368

Table 2: Benchmark results. The Driller column is present for informative purposes and represents the time needed to extract

the data using PyDriller.
Driller Insert & Index Most Costly Insert Q1 Q2 Q3 Q4 Q5
PID Time Time Query Time Time #Changes Time #Methods Time #Files Time #Methods Time
P1 13m 7m UpdateFile 5m 21ms 62 3s 143 3s 443 34ms 1262 40ms
p2 8m 5m UpdateFile 3m 22ms 129 1s 192 4s 60 24ms 929 39ms
P3 35m 13m UpdateFile 9m 21ms 36 1s 59 1s 3083 53ms 3048 67ms
P4 1h59m 51m UpdateFile 34m 43ms 77 2s 208 5s 4782 95ms 15545 2s

Table 3: Query description and complexity in nr. of lines of
code (#loc) for benchmark queries. The #loc includes both
the initialization of GraphRepo and the result mapping.

ID Description #loc

Q1 Select all nodes and relationships for a project. 2

02 Select the evolution of a file's #loc over time, 3
for a specific file.

03 Select the evolution of method complexity 7
over time, for all methods in a file.
Select all files edited grouped by file type,

Q4 . 1
for a specific developer.

Q5 Select the average complexity of methods edited 4

by a developer in all her commits.

Note: All benchmarks ran on a cloud instance with 2 vCPUs and 4 GB RAM. Indexing was performed with a batch size of 50 and all the available information was stored in Neo4j.
This includes the source code before and after a commit, for each file edited in a commit. This corresponds to the “Most Costly Insert” UpdateFile (Table 2) query. When the full
source code is not indexed (only the file diffs are indexed), the insert performance increases with ~90%.

Advantages of using GraphRepo

I
. . Map records to
- Query performance (real-time exploration of other formats (e.g., .csv),
repositories), and scalability i filter or sort
Ine
«—>
Manager AEIBIEES
- Easy to extend and interoperate with
Python’s rich ecosystem (by developing new i i i i
miner and mappers) Commit Developer File Method
Miner Miner Miner Miner
- Easy to maintain data consistency and reuse T T T T

the data across experiments
Select Records

- Easy to reproduce experiments, by only Beeeooen E : : ' :
sharing the GraphRepo config files and any i Git ; Cache | Drillers :

: Repo. ; Extract i(Optional); Insert : |

custom Mapper e " Data - - Records™ -+

Note: Remember the scenarios which best fit the use of GraphRepo, mentioned in the previous slides

isuals

Mappers and v

iners,

Example M

Complexity over time for the commit.py file

NLOC over time for the commit.py file

350

the
extract

examples of using

Some

to

miners

default

300

information and a custom mapper

to plot i

Ayxajdwod

250

Joju

150

Both plots require around 10 #loc

100

10

2018/12/12,
2018/11/28,
2018/11/05,
2018/11/02,
2018/11/01,
2018/10/29,
2018/10/29,
2018/10/27,
2018/10/25,
2018/10/23,
2018/10/22,
2018/10/08,
2018/09/28,
2018/09/25,
2018/09/25, 12:14: mw
2018/09/24, 12:33:14
2018/09/24, 12:20:14
2018/09/24,
2018/06/09,
2018/06/09,
2018/04/24,
2018/04/24,
2018/04/18,
2018/04/18,
2018/04/09,
2018/04/07,
2018/04/05,
2018/04/05,
2018/04/04,
2018/03/30,
2018/03/29,
2018/03/29,
2018/03/29,
2018/03/28,
2018/03/27,
2018/03/26,
2018/03/22,

2018/11/28, 14:5
2018/11/05, -.>m.~o
2018/11/02,
2018/11/01,
2018/10/29,
2018/10/29,
2018/10/27,
2018/10/25,
2018/10/23,
2018/10/22,
2018/10/08,
2018/09/28,
2018/09/25,
2018/09/25,
2018/09/24,
2018/09/24,
2018/09/24,
2018/06/09,
2018/06/09, 5
2018/04/24, 11:22:27
2018/04/24, 00:06:08
2018/04/18, 16:00:23
2018/04/18, 7
2018/04/09,
2018/04/07,
2018/04/05,
2018/04/05,
2018/04/04, 3
2018/03/30, 17:51:46
2018/03/29, 16:58:07
2018/03/29, Hm.w~.8
2018/03/29, 11
2018/03/28, 11:29: N»
2018/03/27, 1
2018/03/26, 1
2018/03/22, 1

=3
date

date

The file complexity is calculated as the average McCabe complexity for each method in the file. The interpretation is in the eye of the beholder.

Note

Demo & QA

For more information see:
- the project’s documentation: https://graphrepo.readthedocs.io/en/latest/
- the project’s repo: https://github.com/NullConvergence/GraphRepo

