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A ML algorithm is said to be robust if:

ML algorithmic robustness 
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*(there are multiple methods to model noise)

● When tested on training samples and on a 
similar test samples, the performance is 
close

● When tested on a samples with noise or 
when the test distribution shifts the 
performance is close to the training 
performance
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We will consider a ML application robust if:

ML application robustness 
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● It satisfies multiple properties such as 
algorithmic robustness, security or privacy 
(see diagram)

● Users are treated ethical and inclusive
(according to legislation, if available)  

● External actors can verify that it respects 
these properties (e.g., has transparent 
audits, provides explanations)
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Robustness – the big picture
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Robustness is a pillar in the EU guidelines for trustworthy AI 

● The EU considers AI applications 
trustworthy if they are lawful, ethical and 
robust

● Robustness is tackled from a technical and 
social perspective (where social robustness 
is intertwined with ethical AI)
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Robustness is an important research topic

Algorithmic robustness in research
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● The picture on the right shows the top 
keywords from ICLR 2021 (a top 
conference in ML/DL)

● Robustness is sixth (although the first 3 
keywords are very general)
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Nearly 40 percent of Rekognition’s false matches 
in test were of people of color, even though they 
make up only 20 percent of Congress

Robustness in the wild
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Today we will focus on:

Robustness today
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● Robustness and security in the ML 
development life-cycle

● Risks and incident management for ML

● Privacy and fairness in ML (only briefly)
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● A computer learns from experience with respect 
a task and a performance measure, if its 
performance on the task improves with more 
experience

● We typically start with a data set, which we divide
into training and test data (experience)

● And try to fit a model which selects the best
hypothesis for an objective (based on the 
performance measure)

● In this talk we will focus on the task of 
classification

The ML Pipeline
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There are 2 main attack vectors for ML:
● Training data – attackers can poison the 

training data in order to introduce  
malicious behavior (e.g., accuracy drop, 
back doors)

● Test data – attackers can corrupt test 
samples to achieve different goals (e.g., 
misclassification, recovery of sensitive 
data, model theft)

● Attacks can target the Confidentiality, 
Integrity, Availability  (CIA) or Privacy of 
ML models

Security of the ML pipeline
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ML Attacks can be classified based on 3 dimensions:

● The pipeline step (Training or Inference)

● The attacker knowledge (White, Grey or Black-box)

● The attack specificity (Targeted or Non-targeted)

A brief taxonomy of attacks
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Attacks against ML 
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ML algorithms use 2 fundamental assumptions:

● 1. The i.i.d assumption - Training and 
test data are drawn from the same 
distribution i.e., they are identically and 
independently distributed

● 2. The manifold assumption - The data 
lie on a low dimensional manifold 
embedded in a higher dimensional 
space

● Breaking any assumption is 
automatically a security vulnerability

ML assumptions relevant to security
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Two types of data poisoning attacks:

● Targeting availability: inject corrupted 
data in the training set s.t. the hypothesis 
learned becomes useless 

● Targeting integrity: introduces a back-
door s.t. the performance does not 
change, but the presence of certain 
features can induce undesired behaviour

Training data poisoning 
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Image from “Adversarial Learning in Statistical Classification: A Comprehensive 
Review of Defenses Against Attacks”
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● Only corrupt new samples are added to the 
training set 

● Try to find the minimum nr. of examples that 
maximise the loss of a model

● Define an optimisation function, e.g., 
min$∈& ' (, *+,-./ + 1 max4,5 ∈67'((, 9, :)

● We can solve the optimisation problem (e.g., 
using gradient descent) or try to generate 
poisoned samples with generative models

Availability data poisoning attacks
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Image from “Certified Defenses for Data Poisoning Attacks” – 3% data poisoning leads to 11% 
drop in accuracy even when strong defences are used
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● Malicious behaviors are triggered only by some 
features / samples (called trojans)

● The trigger is defined as a mask to be applied on 
the input

● The mask targets some parameters of the model 
(white-box or black-box through model inversion)

● E.g., we can define an optimization problem to 
reduce the difference between the target and the 
value on certain inputs: ! = #$%& − ((*&) , +
#$%, − ((*&) , + ⋯, and change the mask

Integrity data poisoning attacks
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Image from “Trojaning attack on neural networks”
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Defences against data poisoning are based on data sanitisation:

● Remove data based on distribution 
properties (oracles)

● Allow only some data samples for 
training (e.g., licensed words in text)

● Remove or detect poisoned data based 
on other criteria (e.g., distance from 
centroids, anomaly detection)

Defences against training data poisoning 
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Three types of data poisoning attacks:

● Targeting integrity: add perturbations to 
test samples in order to compromise 
accuracy

● Targeting confidentiality: add 
perturbations to test samples in order to 
extract model parameters 

● Targeting privacy: use model outputs to 
determine if some data was used in 
training or recover the training data set

Inference (Test) or Evasion attacks 
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Image from 
https://nicholas.carlini.com/writing/2019/all-adversarial-example-papers.html
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● Adversarial examples are samples that look similar 
but induce undesired behaviour

● Try to find the minimum perturbation that can induce 
targeted or non-targeted misclassification

● Define an optimisation function, e.g.,  
!"#$ % + ' − % ) s.t. * % + ' = ,-

● In reality taking small steps towards maximising the 
loss function suffices: ' = .(∇12 3, %, - )

Integrity inference attacks – adversarial examples
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Image from “Adversarial manipulation of deep representations”
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● Universal perturbations (which can be applied to all 
inputs) can be created in a similar fashion

● Without knowledge of the model under attack (black-
box), we can create adversarial examples on a proxy 
model

● Adversarial examples transfer even between 
different ML techniques

Universal adversarial examples and transferability
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Image from “Universal adversarial perturbations”
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Image from “Transferability in Machine Learning
From phenomena to Black-Box attacks”
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A plethora of adversarial defences have been proposed, without much success

● Models robust to adversarial examples must have 
large inter-class separability and small inter-class 
compactness

● Many defences have been proposed (e.g., to detect 
adv. examples, to transform inputs before the model)

● The most effective defence is adversarial training 
(including adv. examples in the training data set)

● However, adv. training increases training time 
significantly

Defences against adversarial examples
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● Reverse engineer the models’ parameters by 
observing the output

● Formulate a set of equations where the unknowns 
are the models’ parameters

● Or find points arbitrarily close to the model’s decision 
boundaries and extracts parameters from these 
samples

Confidentiality inference attacks – model 
extraction
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Image from “Stealing machine learning models via predictions APIs”

19



● Model extraction can be reduced with tricks or by 
serving multiple models, but not by algorithm design

● Round confidence scores to some fixed precision

● Use differential privacy

● Use ensembles of models

Defences against model extraction
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Image from “Stealing machine learning models via predictions APIs”
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● Model inversion recovers the training data from the 
model

● Start with a random input vector

● Use gradient ascent in the input space to maximise
the model’s confidence on the target prediction

Privacy inference attacks – model inversion
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Image from “Model Inversion Attacks that Exploit Confidence 
Information and Basic Countermeasures”
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● Hide confidence scores from predictions (defence by 
obscurity – not recommended)

● Regularise models in order to avoid memorization 
and increase generalization (not efficient)

● Use differential privacy

Defences against model inversion
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Image from “Model Inversion Attacks that Exploit Confidence 
Information and Basic Countermeasures”
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ML for Security vs. Security of ML

There is a difference between using ML for security and developing security for ML

● ML for security – e.g., spam detection, 
network intrusion detection –
misclassifications, esp. false negatives, 
have an impact on security

● Security of ML – although preferable to 
avoid, misclassifications do not always 
have an impact on security (e.g., object 
recognition in cloud storage)
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● Until now we considered the data is controlled (as it is 
in most research projects, but rarely in the world) 

● Data in the world introduces new risks (e.g., storage, 
legal, representativeness, entanglement)

● Data assembly and transformation also introduces risks 
(e.g., annotations, fusion, normalization)

● Control over these processes (e.g., by developing 
distribution checks or control the labeling process) 
increases robustness

Beyond algorithmic robustness – robust  ML 
applications
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Image from “Model Inversion Attacks that Exploit Confidence 
Information and Basic Countermeasures”
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● Until now we considered accuracy the only model 
evaluation metric

● In real scenarios accuracy is just one of the metrics needed

● A robust application should also be tested for bias (e.g., 
group and subgroup bias)

● A robust application must ensure fairness, interpretability
and provide explanations to users (new attack vectors?)

● Due to diverse datasets and experiments, more robustness 
risks are associated to models: e.g., reproducibility, 
hyperparameter optimization, randomness

Robust ML applications – Model risks
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Image from “Model Inversion Attacks that Exploit Confidence 
Information and Basic Countermeasures”
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● An application must be deployed and maintained -> more 
risks

● The deployment environment raises hardware and 
software related security risks

● The (evolving) nature of the world requires continuous 
adaptation and re-training

● ML related incidents have to be managed fast, although the 
ML life-cycle (e.g., re-training) takes longer than traditional 
software

Deployment and inference risks
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Image from “Model Inversion Attacks that Exploit Confidence 
Information and Basic Countermeasures”
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● ML applications interact with humans and often process 
personal data -> they have to respect human rights and 
avoid ethical risks

● Users have the right to an explanation -> robust ML 
applications should provide them

● Robust ML applications should be auditable by external 
actors (i.e., audit trails should be built in an application)

● Users have the right to be informed that they are 
interacting with apps using ML (i.e., robust apps must be 
transparent and establish communication channels with 
users)

Governance risks
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Image from “Model Inversion Attacks that Exploit Confidence 
Information and Basic Countermeasures”
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Learn more
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Reading list
Check out the awesome list with 

relevant literature:
https://github.com/SE-

ML/awesome-seml

Catalogue
Check out the catalogue of ML 

Engineering Practices:
https://se-ml.github.io/practices

● Follow and contribute to the Software Engineering 
for Machine Learning project at LIACS (https://se-
ml.github.io)

● Read the catalogue of practices for building robust 
and future proof machine learning apps (https://se-
ml.github.io/practices)

● Follow the Awesome Software Engineering for 
Machine Learning reading list on Github
(https://github.com/SE-ML/awesome-seml)
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Resources
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Besides the references cited in the figure captions, we recommend:
● Underspecification presents challenges for credibility in modern machine 

learning
● Explaining and harnessing adversarial examples
● Adversarial Examples that Fool both Computer Vision and Time-Limited Humans
● Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to 

Adversarial Examples
● Adversarial Examples on Object Recognition: A comprehensive survey
● https://nicholas.carlini.com/writing/2018/adversarial-machine-learning-reading-

list.html
● https://se-ml.github.io
● https://se-ml.github.io/practices/
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Questions?

THANKS
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https://se-ml.github.io


