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Today’s talk in a nutshell
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Topics covered

• Brief introduction to Deep Learning

• Attacks on the Machine Learning pipeline
• Inference attacks - Adversarial Examples

• Why do they exist?
• How to create adversarial examples
• How to protect against adversarial examples

• What we do

Most of today’s talk is focused on computer vision and deep learning, but
adversarial examples can be found for domains or for other ML models.
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The object recognition task

Goal: Map images to an n-dimensional space where we can separate
between objects.

Method: Learn this mapping (hypothesis) through Empirical Risk
Minimisation.

Challenges: It’s hard to select relevant features from images and
to restrict the space of hypotheses.

Alexandru C. Serban



An approach that works

• Create a (deep) representation as a composition of many
functions.
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• Back-propagate the error in search for its minimum.

∂J
∂x

∂f (1)

∂x←−−−− ∂J
∂f (1)

∂f (2)

∂f (1)←−−−− . . .

∂f (n)

∂f (n−1)←−−−− ∂J
∂f (n)

∂ŷ
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Assumptions: The Manifold Assumption
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Assumptions: IID
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DL achieved ’human-level’ performance on
many IID tasks around 2013
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Caveats of ’human-level’ performance
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Security requires thinking beyond IID

• Not identical: Attackers can use unusual inputs

• Not independent: Attackers can repeatedly send the same mistake

(Eykholt et al. 2018)
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ML models fail unexpectedly in non IID
settings

(Goodfellow et al. 2016)
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Attacks on the ML pipeline
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Adversarial Examples



Adversarial Examples - back to origins

min
x ′

󰀂x ′ − x󰀂p,

s.t. f (x ′) = l ′,

f (x) = l ,

l ∕= l ′,

x ′ ∈ [0, 1]m,

(Szegedy et al. 2014)

A first hypothesis on the existence of adversarial examples: they lie in
’pockets’ of the data manifold.

Disadvantages: Solving the optimisation problem in this form is resource
intensive (but guarantees a minimal perturbation).
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Simpler methods to generate adversarial
examples

η = 󰂃 sign (∇xJ(θ, x , y))

x ′ = x + η

(Montufar et al. 2014) (Goodfellow et al. 2016)

A 2nd hypothesis: DNNs behave, in fact, linearly (despite the non linear
transformations in the hidden layers) and adversarial examples span high
dimensional regions.

Summing small perturbations in all dimensions of a high dimensional input
forces the entire sum in a direction that will likely cause misclassifications.

Alexandru C. Serban



Precise and simple methods

Iteratively apply the gradient method presented earlier:

x ′
0 = x , x ′

N+1 = Clipx,󰂃

󰁱
x ′
N + 󰂃 sign

󰀃
∇xJ(x ′

N , ytrue)
󰀄󰁲

,

(Kurakin et al. 2016)

Use momentum:

gt+1 = µgt +
∇′

xJ(θ, x , y)
󰀂∇′

xJ(θ, x , y)󰀂1
x ′
t+1 = x ′

t + 󰂃sign(gt+1)

(Dong et al. 2017)

and others ...
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Zooming out

• No universally accepted hypothesis on the existence of adversarial
examples.

• Over 20 types of powerful attacks developed.

• Some of which do not require any information from the model
(black box).

• Many attacks work using a target class.

• The attacks have been successfully applied to other ML tasks such
as speech recognition, facial recognition, malware detection, etc.
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Some examples: Face Recognition

(Sharif et al. 2016)

By wearing a printed pair of glasses one can evade recognition or imper-
sonate another individuals.
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Some examples: Deep Reinforcement
Learning

(Huang et al. 2017)
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Peculiar phenomena: Universal
Perturbations

(Moosavi-Dezfooli et al. 2017)

We can find one perturbation that can be used with any input.
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Peculiar phenomena: Transferability

(Papernot et al. 2016)

Adversarial examples transfer across ML models.
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Defences



What is a (good) defence?

X

X* X*

X*

X* X* X*
�adv(X,F )

• There is no universally accepted definition for a defences.

• In practice the norm-ball around an input is used to define
robustness:

B(xc , r) = {x | 󰀂x − xc󰀂p ≤ 󰂃} (1)
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Classification of defences

• Reactive defences - target adversarial examples early in the
processing pipeline

• promising because they can be applied for all models
• but inefficient

• Proactive defences - alter the training process or data

• offer some level of protection
• but require more data

• Provable defences - use formal tools to prove robustness
• very good results
• but are not scalable

(Serban and Poll, 2018)
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Fast forward through reactive defences

• Detection of adversarial examples - train separate detectors
based on different features or define a new class for adv. ex.

• Input transformations - preprocess inputs (e.g. discretisation,
compression, noise reduction, etc.)
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Proactive defences: Adversarial training

J̃(θ, x , y) = αJ(θ, x , y) + (1− α)J(θ, x + 󰂃 sign (∇xJ(θ, x , y)), y)

(Goodfellow et al. 2016)

• Adversarial training is a method of regularisation

• Provides unexpected benefits: interpretable gradients and robust
feature representation that alight well with salient data
characteristics

• Requires more data for empirical risk minimisation (proved in the
PAC framework)
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Better adversarial training: robust
optimization

Define a norm ball around an input, S and solve:

min
θ

ρ(θ), where ρ(θ) = E(x ,y)∼pdata

󰀗
max
η∈S

J(θ, x + η, y)

󰀘
,

(Madry et al. 2017)

• The inner maximisation problem can be approximated using
Projected Gradient Descent.

• The outer minimisation problem is solved using empirical risk
minimisation.

• If the inner maximisation problem is well approximated, this method
guarantees adversarial examples can not be found with η in S.
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Provable defences through convex
approximation

(Wong and Kolter, 2018)

• Develop a convex approximation of the set of activations reachable
through a norm-bounded perturbation

• Use robust optimisation to minimise the worst case loss over this
outer region (via a linear program)
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Provable defences through abstract
interpretation

(Mirman et al. 2018)

• Define an abstract transformer (as a sound over-approximation of
the space of all possible perturbations)

• Train with the resulting polytope
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Take aways - defences

• Defences that act early in the pipeline are promising because
they can be applied to all models - but are (currently)
innefficient

• Adversarial training offers some performance improvements
(and unexpected benefits), but require much more data
(currently unavailable).

• Provable defences are interesting, but do not scale well.
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Our approach



Learning to learn robust classifiers

Premises:

• Reduce the number of samples needed for adversarial training

• Avoid problems with gradient sensitivity

• Avoid having to train for different attack types

Approach: Meta-learning (recent work on meta-learning is similar to
transfer learning)

Alexandru C. Serban



Future Directions

• Security should have clear goals: for two models with the
same error, do we prefer the model with lower confidence on
mistakes or the model whose mistakes are harder to find, etc.?

• Reason beyond the norm-ball

• Search for theoretical answers for this problem

Propositions:

• Explicitly model adversarial uncertainty in training datasets

• Bayesian deep nets should solve the adversarial examples
problem
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Conclusions

• Security requires thinking beyond IID

• Most ML models perform poorly outside IID

• Adversarial examples are just a way of fooling ML models

• There is no generally accepted hypothesis on their existence

• There is no generally accepted definition of ’done’

• No defence can scale more than 50% accuracy on CIFAR-100
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Questions

Contact: Advertising:

a.serban@cs.ru.nl
cs.ru.nl/∼aserban

• Master thesis projects

• Guest lectures

• Internships at SIG on data driven
software engineering or security
aspects of ML

• Get involved:
https://github.com/tensorflow/cleverhans
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