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Applying Supervised Learning on
Malware Authorship Attribution

by Coen BOOT

Malware is a problem in current digital society, since it can cause economic or phys-
ical damage and in the end disrupt society as a whole. In order to effectively fight
cyber threats by coming up with (legal) consequences for the actor behind the mal-
ware, it is important to be able to provide a certain degree of proof about who is
responsible for the malware. The process of linking an author to an asset is called
authorship attribution. In case of malware, attribution needs to be based on binary
executables, since the source code is mostly unavailable.

This thesis focusses on evaluating and comparing two promising approaches for
performing authorship attribution on malware. These approaches are based on two
supervised learning algorithms, namely a neural network and a random forest clas-
sifier. Both approaches use automatically generated analysis reports from a sandbox
solution as input data.

Malware can be divided in two types with respect to the actors behind it: state-
sponsored or criminal. This thesis focusses on the first type, since state-sponsored
malware has a richer and clearer hierarchy of authorship (i.e. country-level and APT
group-level) compared to criminal malware which is often attributed to a group of
individuals which is not explicitly related to a nation-state.

Since no suitable dataset containing state-sponsored malware is available yet,
we collected a dataset using a newly devised method, based on indicators of com-
promise found in threat intelligence reports. In this way we collected a dataset
with 3,594 state-sponsored malware samples, which forms the first publicly avail-
able dataset of its kind.

Using the retrieved malware samples, we used 2 sandboxes to generate reports
about the samples: Cuckoo and VMRay. Moreover, we downloaded the reports
belonging to the samples from VirusTotal as well. All these reports were converted
to a bag of words, after which they are used as input for the classification algorithms.

We evaluated the two approaches on the dataset and found that both approaches
perform well (with accuracy results up to 98.8%) and match the performance de-
scribed in the original papers. The neural network-based approach tends to per-
form slightly better compared to the approach based on a random forest classifier,
whereas the latter uses considerably less time to finish training.

A trained classification algorithms contains knowledge about the characteristics
of the different classes, since it needs to decide to what class an unseen sample be-
longs. We extracted this information, attempting to discover new insights and verify
whether the classifier makes sensible decisions.
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Chapter 1

Introduction

Malware is a problem in current digital society, since it can cause economic or physi-
cal damage and in the end disrupt society as a whole. Although anti-virus solutions
attempt to withstand the massive flows of malicious software, they fail in blocking
every single piece of malware. This is caused by the fact that they often look for
exact fingerprints, without being able to recognize characteristics similar to known
malware. This makes it possible to create malware which is able to successfully
infect a machine and perform its (illicit) tasks. Malware is not only used by cyber
criminals. State-sponsored Advanced Persistent Threat (APT) groups make use of mal-
ware as well to spy on their targets, contributing to an even more tumultuous cyber
landscape.

An important step in successfully fighting the threat of malware infections is the
technical analysis of malware. Once one is able to see and understand in detail how
a malware sample works, new techniques for detecting and stopping that sample
can be designed using the obtained analysis.

However, technical analysis is not the only possible counteraction. In order to
effectively fight cyber threats by coming up with (legal) consequences for the actor
behind the malware, it is important to be able to provide a certain degree of proof
about who is responsible for the malware. The process of acquiring this evidence is
called authorship attribution (or shortly attribution). As shown in the literature study
described in Chapter 2, much progress has been made in this field, but many of
developed techniques make use of the source code of the software. Since the source
code of malware is unavailable for the vast majority of malware samples, author
attribution needs to be based on features of a binary executable. Moreover, a lot of
effort is put by malware authors into ways of preventing any form of attribution,
which makes it even more difficult to track down the author.

Not only is the relation between a malware sample and its author an interesting
link, links between various samples based on shared techniques, libraries, purposes
or targets are useful too. Since malware samples from the same malware family
share a lot of properties and are often created by the same author, an approach for
detecting one sample may be useful for detecting another sample from the same
family as well. Finding proper and efficient ways to perform family classification can
therefore be helpful for performing authorship attribution.

Both authorship attribution and family classification are classification problems in
the machine learning community: problems in which a collection of items needs to
be grouped in predefined classes as accurately as possible. Any algorithm that is
able to solve such problem is called a classification algorithm.

Supervised learning is a methodology which uses machine learning algorithms
to learn from labeled data. The use of modern supervised learning techniques like
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deep neural networks for classification has great potential, but is yet not fully ex-
plored; only a few publications describing malware classification with the use of su-
pervised learning were encountered during the literature study. One of the biggest
advantages of such techniques is the fact that they need no human input apart from
a labeled dataset, thus saving a lot of time-consuming analysis labor. Moreover, they
provide high level results, based on patterns found in the dataset. Therefore, super-
vised learning techniques are able to find relationships between malware samples
which are hard to discover for humans [1-3].

This thesis will focus on evaluating and comparing supervised learning approach-
es for performing authorship attribution, guided by the methods Ro18 and Am17 as
described in [1] and [2] respectively. Moreover, we will extract malware characteris-
tics from trained classifiers in order to evaluate the trustworthiness of the classifiers
and to see if new characteristics of authors can be discovered.

1.1 Research Questions

The main research question for this Master Thesis is as follows:

"To what extent is it possible to perform state-sponsored malware
authorship attribution using supervised learning?”

This question is divided in the following research questions:

1. Which supervised learning techniques are optimal for performing malware
authorship attribution?

2. What type of dataset is needed for reaching satisfying attribution performance?

3. To what extent can intelligible author characteristics be derived from a trained
supervised learning algorithm?

The choice for state-sponsored malware is made because of the fact that it has
a more interesting hierarchy in terms of authorship compared to ‘regular’ malware
(malware which is not related to any nation-state actor). This difference in hierar-
chy consists for example of the fact that a single nation-state actor often has multiple
APT groups (again consisting of multiple developers) to its disposal for writing mal-
ware, whereas 'regular” malware often is produced by independent groups. There-
fore, the amount of information with respect to authorship that is available for any
known malware family differs as well; in case of 'regular’ malware, only the name
of the group behind the malware may be known, whereas in case of state-sponsored
malware, the responsible nation-state actor and APT group are often available [4].

1.2 Structure of this Thesis

This remaining chapters of this thesis are structured as follows: Chapter 2 describes
the related work about the current state of research into authorship attribution and
family classification. Moreover, this chapter provides an overview of the most im-
portant approaches available for performing authorship attribution and family clas-
sification. Although this thesis focuses on authorship attribution, approaches focus-
ing on family classification are considered as well, since we suspect both problems
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to be closely related to each other. Two of the described approaches, Ro18 (based
on a neural network) and Am17 (based on a random forest classifier), will form the
basis for this thesis. Chapter 3 explains the use of supervised learning techniques
and metrics to evaluate classifier performance, followed by a description of the col-
lected dataset and the way is has been constructed out of publicly available sources
in Chapter 4. A description of the setup of the experiments performed for testing
the performance of both approaches is described in Chapter 5. Chapters 6 and 7
describe the evaluated performance of Ro18 and Am17 respectively, both provid-
ing some preliminary conclusions as well. The performance of both approaches are
compared in Chapter 8, after which the process and results of extracting human-
interpretable characteristics from trained classifiers is described in Chapter 9. The
thesis ends with a discussion about the achieved results and complications faced in
Chapter 10 and the final conclusions and description of future work in Chapter 11.






Chapter 2

Background and Related Work

In order to effectively fight cyber threats by coming up with (legal) consequences for
the actor behind the malware, it is important to be able to provide a certain degree
of proof about who is responsible for the malware. The process of acquiring this
evidence is called authorship attribution (or shortly attribution). Due to the complexity
of the problem, still no silver bullet is provided by academia to solve this problem [5,
6].

Authorship attribution may be seen as a specific malware classification problem,
since it seeks to classify malware samples by author. Other common malware clas-
sification problems include malware detection, where samples are classified based on
whether they are benign or malicious, and family classification, where samples are
classified based on the malware family they belong to.

This chapter describes the current state of research into attribution and family
classification, focusing firstly on the question about the legal goals of authorship at-
tribution in Section 2.1. After that, an overview of technical, malware inherent com-
plications hindering attribution and family classification is provided in Section 2.2,
followed by a summary of the technical means to solve classification problems in
Section 2.3.

One of the conclusions that can be drawn from this chapter, is that the problem
of (state-sponsored) malware classification, and especially authorship attribution on
binaries, is not covered extensively by academia. This makes the the overview given
in this chapter fairly comprehensive.

From all literature available on this topic, [1, 2, 7, 8] form the main source of in-
spiration for this thesis, since those publications contain relevant considerations and
the most recent developments in the field of (state-sponsored) malware attribution
and provide pointers to multiple paths for new research.

2.1 Legal Goals of Attribution

In the first place, malware attribution is considered to be not trivial at all. While
any programmer leaves traces of authorship, most traces can easily be faked on pur-
pose as well. Therefore, statements of attribution must be perceived as substantiated
evidence and not as facts. Since it is important to know to what extent authorship
attribution can be applied, several research projects were set up to investigate real-
world problems related to attribution, such as feasibility and the legal complications
of authorship attribution of malware. The conclusions of this research will be sum-
marized and discussed in this section.
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2.1.1 Distinctions in Types of Attribution

Shamsi et al. [6] justly points out the difference between technical and human attri-
bution. The goal of technical attribution is to identify which machine is being used
to create or launch the attack and to provide proofs which back up such a claim.
However, in order to start legal prosecution, the attack needs to be linked to one or
more individuals, which is done in the process of human attribution. This process is
in many cases more extensive, since it often requires technical attribution first.

Another distinction that must be made is between authorship attribution and au-
thorship discrimination. Whereas authorship attribution tends to find the author given
a certain asset, authorship discrimination tries to establish proof that two given as-
sets where created by the same author [9]. This distinction is important to keep in
mind, while the first problem seeks to find an author (who is the author of X?), based
on prior knowledge such as the authors former work, whereas the latter accepts or
rejects a given hypothesis of shared authorship (are Y and Z written by the same au-
thor?).

This thesis focuses on human attribution and authorship attribution. Therefore,
the classifiers that are used are trained to learn from the characteristics of an APT
group or nation-state and used to determine to what actor a given sample belongs.

2.1.2 State-sponsored or not?

Imagine a case where criminals have been trying to hack a financial institution, but
that they were caught in the act. In order to get the criminals convicted, the mem-
bers of court need to be convinced that the evidence is valid beyond reasonable
doubt [10]. However, things get different when one nation-state actor tries to hack
into the systems of another nation-state. Consensus exist that a lower level of proof
is required before taking further steps in cases regarding nation security compared
to civil cases [11].

This difference is due to consequences that are related to attribution: conclusions
about the responsible actors of nation-state attacks are being politicized, whereas
criminal attacks need to pass the domestic court. Moreover, in the case of attacks
on nation-state level, the process of attribution seeks to establish proof about the
sponsors of the attack, whereas criminal cases seek to come up with burden of proof
related to the launcher of the attack.

Two conceptual attribution workflows could be drafted, considering the distinc-
tion between criminal and state-sponsored cases. The workflow for criminal cases
involves discovering the attack, finding the attacker, seizing evidence and bringing
this to court, hoping to be able to provide "proof beyond reasonable doubt’. How-
ever, when the attacker is located in a remote country, that remote country needs
to be willingly to cooperate, by e.g. supplying the match between IP-address and
name.

This cooperation does not exist when considering attacks on nation-state level.
Therefore, the workflow for cases involving sponsorship by a nation-state consists
of discovering the attack, finding evidence, making an assessment and acting upon
this assessment. In this workflow, political judgments play a role in the process of
attribution, implying that attribution could become a matter of ‘beliefs and reasons’
instead of "proof beyond reasonable doubt’. It is the task of intelligence services
to make assessments which will lead to those judgments, since they are the most
appropriate organization, having both political and technical expertise in place to
perform proper attribution [10].
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Getting to know whether an attack really is sponsored or launched by a nation-
state requires a thorough approach. The popular belief that sophistication is the
main indicator for making this decision, is refuted by Guitton and Korzak, who note
that the term ’sophistication’ is used inconsistently [12]. Moreover, the implication
that sophistication does involve sponsorship by a nation-state (and vice versa) is
rejected as well.

When the outcome of an investigation suggest that an attack is state-sponsored,
a nuanced judgment is still needed. This is due to the fact that the involved nation-
state could be held responsible in several degrees, ranging from minimal responsi-
bility (because the act of attacking has explicitly been prohibited by the government)
up to full responsibility (because the government actively has been working on the
attack) [12, 13].

2.1.3 Legal Goals

Given the two conceptual workflows drafted above, we may conclude that two legal
goals exist for malware authorship attribution:

1. Get evidence ‘beyond reasonable doubt’ to bring a case to court and prosecute
a criminal (organization).

2. Get evidence as a matter of well-substantiated 'beliefs and reasons’ to use as in-
put for political judgments regarding a case where nation-states are involved.

Since it is likely that most cases fall either in a criminal context or in a national secu-
rity context, a combination of the mentioned legal goals will seldom occur. Since the
first goal requires human attribution on the level of one or a few individuals in the
end, it is hardly feasible to develop an algorithm which provides sufficient evidence
to meet the required standards. In case of the latter legal goal, several possibilities
loom up while there are several means to automatically come up with substantiated
pointers to responsible nation-state actors or APT groups. Several means to come
up with those substantiated pointers will be explored in this thesis.

It must be noted that such substantiated pointers are not only useful for nation-
states which are under attack, but that e.g. cyber security companies try to gain
this type of information as well, in order to deepen their understanding of malware
samples and campaigns.

2.2 Complications Inherent to Malware

Working with malware poses inherent complications to analysis [8]. Since malware
is designed to be as undetectable and untraceable as possible, a lot of effort is put
into hiding malicious goals and procedures and adding fake procedures and traces
to trick both human analysts and automated analyzers. Because of this, the applica-
tion of detection, classification and attribution techniques is strongly impeded. This
section provides an overview of three such complications.

2.21 Unavailability of Source Code

First of all, most authorship attribution approaches are developed to determine au-
thorship solely based on stylistic features of source code (see for example [14]). How-
ever, regarding the case of malware, the unavailability of source code in the far ma-
jority of cases throws a spanner in the works for this approach. Therefore, only
techniques using binaries for analysis can be deployed [8].
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2.2.2 Hiding Intents

Secondly, malware is often processed in order to hide its intents, using all sorts of
techniques such as obfuscation, encryption and analysis evading techniques. There-
fore, approaches that are developed for authorship attribution of benign binaries
do not always perform well when analyzing malware, simply due to the fact that
they are not designed to handle obstacles caused by intent-hiding techniques [5, 8].
The techniques for hiding intents can be divided into static (happening before and
during compilation) and dynamic methods (happening at runtime).

Static Methods

Static techniques for hiding intents focus on making a compiled binary has hard to
understand as possible. The most important techniques to do so include [15]:

e Packers: The most common static way for malware to circumvent the anti-
virus (AV) signature checks is by using so-called packers. Such packers com-
press binaries into a smaller and sometimes encrypted asset and add a small
part of code to extract the compressed asset at runtime. Although packers
are often used for malicious intents, they are also helpful for benign purposes
such as protecting software copyrights and performing binary compression to
save diskspace or bandwidth. Therefore, not all packed software can simply
be considered as being malicious.

The problem that packers introduce is the fact that automatic analysis of soft-
ware without running it first becomes a very complicated and nearly infeasible
task. Moreover, several advanced forms of encryption methods, such as poly-
morphism and metamorphism are used, increasing the complexity of detecting
malware due to the fact that the malware mutates every time it is executed.
This causes signature-based approaches to fail in fighting malware effectively,
but also opens new ways to detect malware by observing e.g. side channels
such as CPU workload [16].

One way of dealing with packed malware is described in [17], where an ap-
proach is proposed which uses dynamic analysis for unpacking malware and
static analysis based on flow graph matching for malware family classification.

e Code Virtualization: Another intent-hiding static method is code virtualization.
This technique sets up a virtual machine (VM) with a custom, unfamiliar in-
struction set and translates the malicious code to that instruction set. The VM
and the translated code are included in the malware. Once the malware gets
executed, it initializes the VM and runs the translated code on it. The main
problem that this approach introduces, is the fact that in order to reverse the
malware to retrieve the original code, one needs to understand the VM inter-
preter, the translation process and the translated code. This process can get
even harder when multiple VM’s and a broad variety of instruction sets are
used [18].

Dynamic Methods

Apart from the obfuscation techniques that make the functionality of a binary hard
to understand, several tricks are used to check at runtime whether the malware is
being analyzed. When this would be the case, the malware could change its behavior
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or terminate, hindering analysis in this way. These tricks can roughly be categorized
as follows (note that most tricks are specific to Windows) [19]:

e Sandbox Evasion: Sandboxes are often used for malware analysis, since they
are a good way of looking into a sample’s behavior, by executing it [20]. Al-
though the sandbox gets infected by doing so, the infection can easily be un-
done, since sandboxes are designed to be revertible to an earlier state. To im-
pede the use of sandboxes for analysis, a sample could observe certain artifacts
which provide clues about the use of sandboxes, such as the fact whether the
MAC address of the infected machine is known to be a MAC address of a vir-
tual machine, or the presence of certain processes, such as VmwareService.exe.

e Debugging Evasion: Another type of evasion is debugging evasion. A piece
of malware can easily query the Windows API to check whether a debugger
is active or not. Also, the activity of known debuggers, such as OllyDbg, can
easily be noticed by requesting the titles of currently opened windows.

e Anti-virus Evasion: In order to evade anti-virus solutions, malware could per-
form several tricks at runtime, such as creating enormous files in order to crash
a file scanner or trying to disable anti-virus tools. Although numerous tech-
niques are around, they are not covered here, since the analysis done in this
research will not be impeded by these kind of evasion techniques.

Although all intent-hiding methods seek to make analysis harder, they some-
times provide additional information about the author of the malware or the relation
to other malicious software (e.g. by using similar techniques, having shared XOR-
keys for string obfuscation or shared hashes for hiding API calls) [7].

2.2.3 Fake Traces

Thirdly, authors of malware try to trick researchers in drawing faulty conclusions
by adding fake traces to other authors or malware families. These traces can in-
clude timestamps from other timezones, adding text in different languages, using
deceiving name-giving or reusing exploits from different actors [21]. Therefore, it is
important to check whether clues of authorship are genuine or fake.

2.3 Technical Means for Authorship Attribution and Family
Classification

Although the problems as described in Section 2.2 are comprehensive, several tech-
niques exist to make attribution (partially) possible. This section provides an over-
view of binary attribution and classification techniques. First, techniques which clas-
sify malware in general are given in Section 2.3.1, since more advanced techniques
often build on those principal ideas (e.g. the ideas proposed in [22] build on tech-
niques described in [23] when it comes to using API calls for analysis). The more
advanced techniques then, which are especially designed for authorship attribution,
are discussed in Section 2.3.2, followed by the application of machine learning for
performing attribution and family classification in Section 2.3.3.
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Chapter 2. Background and Related Work

2.3.1 Approaches Focused on Family Classification

Approaches for classifying software (hence also malware) based on code-similarities
and code-reuse are well-described in literature, and focus mostly on:

Metadata: One of the easiest ways to compare malware is to compare the meta-
data of samples. Many forms of metadata are easy to extract, such as used
strings, hashes, PE headers, compilation time, used packers etc. [24]. The pres-
ence or absence of overlap in several parts of the gathered metadata provide
clues whether two samples are related.

Internal Functions: Malware, just like any other piece of software, consists of
a collection of functions. When analyzing the functions inside a malware sam-
ple, one can classify the sample, since research has proven that function (call)
frequency and function length can be used as measures for classification [25,
26].

API Calls: Instead of only looking to functions inside a binary, functions out-
side the binary that are called by the binary can be regarded as well. A specific
example of such external function calls are API calls. API calls are requests,
made by a piece of software to the operating system (OS) in order to execute
tasks, like MoveFile or GetFileInformation. When analyzing the calls of a
sample, one can get a rough idea of what such a program tries to achieve [23].
Moreover, such calls can be used for establishing malware signatures and de-
tecting malware families based on the achieved data [27-30].

Code Blocks: Malware could easily be classified as well by looking at blocks
of binary code that samples share. Whenever pieces of malware share one or
more code blocks, chances are that those samples are related [31]. Using the
technique proposed in [32], signatures suitable for comparing code blocks can
be generated, making this process more efficient compared to a more naive
approach. Also machine learning can be applied to make such an approach
work [33].

Control Flow Graphs: The structure of a piece of software can be visualized
using a control flow graph, a graph visualizing all possible paths that the exe-
cution of the program could traverse. A special variant of such control flow
graph is the call graph, where the nodes represent the routines of a program.
These kind of graphs enrich the previous two approaches (API Calls and Code
Blocks) and are very suitable for the analysis and classification of malware.
Nevertheless, other types, such as a data flow diagram could be used as well [34—
39].

Visualization and Image Processing: A totally different approach can be taken
by converting a binary file to an image. This can basically be done by convert-
ing binary code to a 8-bit vector, and using this vector as a pixel in a grayscale
image. However, more sophisticated approaches exist, such as the approach
proposed in [40], which generates an image based on the opcodes in a sample
and uses similarity hashing to calculate the similarity between two images,
and thus between two malware samples. The resulting image shows the struc-
ture of a binary file surprisingly well. On these images, the whole range of
image processing techniques can be deployed, making it possible to classify
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malware [40—43]. ‘Surprisingly, this approach also seems to be resilient to con-
temporary packing strategies and can robustly classify large corpus of mal-
ware with both packed and unpacked samples’ [42].

e Behavioral Fingerprints Instead of statically looking at malware samples, it is
also possible to execute a sample and watch its behavior closely. Since it may
be assumed that malware samples from a single family behave quite similar, it
is possible to classify malware based on behavior [44].

e Constructing Family Genetics: In the field of biology, many studies have been
made about the matter of genetics. The principles of genetics can be applied
to malware family classification as well. When taking multiple features into
account, such as compilation time and malware family indicators, one is able to
link samples of a malware family to each other, put them in chronological order
and detect inheritance. This type of method has for example been applied in
combination with machine learning in the Malware Analysis and Attribution
using Genetic Information (MAAGI) system, a major component in the US
sponsored Cyber Genome Project [22, 45].

e Combining Technical Features: A well-chosen combination of technical fea-
tures, such as the ones mentioned above, can be used to link similar malware
to each other. An excellent example of this is the method as described in [46],
where 13 different types of features are combined to form input for classifica-
tion algorithm.

Looking at the means mentioned above, it must be noted that they tend to clas-
sify software or malware in general, but that no explicit attention is given to proper-
ties that indicate possible shared authorship. Therefore, such features cannot be used
for direct authorship attribution, since they might contain no information about the
author at all [8]. Because of this, they must be used with great caution, or be modi-
fied to suit the goal of authorship attribution.

2.3.2 Approaches Focused on Authorship Attribution

Apart from general approaches to classify software, several specific techniques exist,
which do focus on the specific problem of authorship attribution. As pointed out in
Section 2.2.1, approaches which use source code are out of scope, since the source
code is not available for the far majority of malware samples. When only considering
binaries, the techniques described in current literature can be grouped as follows:

e Stylistic Features Surviving Compilation: Although we assume the availabil-
ity of source code to be out of scope, some of the principles of extracting stylis-
tic features from the source code can still be applied to binary malware sam-
ples, as long as these features survive the phase of compilation. Examples of
stylistic features that survive compilation are branch constructs and used inte-
ger types. Moreover, flow graphs, as described in the previous section, provide
significant data as well [5, 47, 48]. However, when a piece of malware is writ-
ten by a team or includes external libraries (thus involving multiple authors),
these stylistic features become weaker [7].

e Combining Technical Features: The benefit of performing authorship attribu-
tion on malware is that malware, unlike written text, also contains technical
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features. Examples of technical features include timestamp formatting, multi-
threading model, programming language, compiler, (shared) encryption keys
or passwords, data exfiltration techniques, code reuse, shared exploits or the
preference in use of certain IP addresses, email services, C&C-servers or the
features mentioned in Section 2.3.1. In case of authorship attribution however,
features need to be selected with care, because not all imaginable features are
related to authorship of software, but may be more related to e.g. the purpose
of the software [7, 8, 21].

Although these methods do work on software in general, they are not always
specifically designed for analyzing malware. Due to the complications that malware
entails, as described in Section 2.2, those features may not always be suitable when
working with (complicated) malware.

2.3.3 Approaches Using Machine Learning

Recent developments include machine learning approaches for the detection and
categorization of malware, using supervised as well as unsupervised machine learn-
ing methods. These developments also include techniques that can be used to make
machine learning algorithms perform better when working with malware. For ex-
ample, similarity hashing can be used as an technique to train an algorithm for de-
tecting semantically similar files [49].

¢ Based on Binary Features: Examples of applying machine learning to features
like those mentioned in Sections 2.3.1 and 2.3.2, are described in [28], [29],
[30], [33], [43], [45] and [48]. Most of them perform malware detection or clas-
sification; OBA2, the only approach which focuses on authorship attribution
uses techniques which are not designed for and tested on obfuscated binaries,
making the proposed method less useful for malware analysis [48]. Also ap-
proaches using machine learning based on other techniques than those men-
tioned above exist, such as an approach by Annachhatre et al., which generates
a hidden Markov model based on extracted operation codes and uses a k-means
clustering algorithm to classify malware [50].

e Based on Sandbox Reports: Since most mentioned machine learning approach-
es only use static features for malware analysis, they do not have information
about the behavior of (packed or obfuscated) malware samples. This behavior-
al information can be extracted by skilled analysts, making large-scale analysis
a very costly process. This is where sandboxes come in helpful, because sand-
boxes are able to extract numerous malware characteristics in a short time [20],
including information about the behavior of a sample. The approaches known
to us at the moment of writing are described in [1], [2] and [3].

2.3.4 Selected Approaches

It is worth examining to what extent supervised learning is able to classify malware
based on authorship. In order to find this out, we selected known approaches based
on sandbox reports. Approaches based on sandbox reports look the most promis-
ing to us, since sandbox reports should provide a good overview about numerous
characteristics of a sample, without requiring human effort or additional tools.
From the 3 approaches available, we left out the approach described in [3], since
this approach is less recent than, partially written by the same author as, and similar
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to Ro18. In this way, we selected Ro18 and Am17, and evaluated and compared
their performance on a single dataset.

e Ro18 is described in [1], a scientific paper published by a company that sells
deep learning anti-virus solutions. This paper illustrates how machine learn-
ing can be applied in a simple way to analyze state-sponsored samples. Auto-
mated sandboxes like Cuckoo Sandbox [51] provide the possibility to upload a
sample and retrieve a report with the outcome of the analysis by the sandbox.
After performing some minor processing to this Cuckoo report, the modified
report is provided as input to a deep neural network [1]. Most principles of
this paper by Rosenberg et al. seem to be based on [3], a paper describing
earlier research of one of the authors, in which exactly the same method for
preprocessing the data is proposed. Furthermore, the papers overlap in terms
of the neural network architecture that is used.

e Am17 is an approach similar to Ro18, in which reports from sandboxes are
used as input for machine learning as well. However, in contrast to Ro18, a
Random Forest Classifier is used and the input data is more tailored to the
algorithm [2].

Moreover, the classifier is trained to solve family classification on criminal mal-
ware instead of authorship attribution on state-sponsored malware. Although
we take into account that these differences may lead to a worse classification
performance, we do not expect major incompatibilities using Am17 to solve
authorship attribution, since we suspect both problems to be closely related to
each other.

Using these approaches, the problem of authorship attribution seems to be dealt
with in an effective way. Both methods are easy to implement and require minimal
human effort, yet having high accuracy scores reported. Since we selected Ro18 and
Am17 as approaches to evaluate and compare, the following chapter will describe
the fundamentals of the techniques used in these approaches.
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Chapter 3

Used Malware Classification
Techniques

We will use two classification algorithms and different metrics to evaluate the perfor-
mance of the trained classification algorithms. These used techniques are described
in this chapter.

3.1 Classification Algorithms

Ro18 and Am17, the two approaches that we are going to evaluate and compare, use
different classification algorithms. Ro18 uses a deep artificial neural network to classify
malware samples, whereas Am17 makes use of a random forest classifier (RFC). Since
we evaluate and compare both approaches, we will work with the same classifica-
tion algorithms as well. A brief description of both algorithms will be given, as well
as a general introduction to supervised learning.

3.1.1 Supervised Learning

Artificial neural networks and random forest classifiers are both used in this context
for supervised learning. Supervised learning is a methodology which uses machine
learning algorithms to learn from labeled data. Classification problems are one kind
of problems that can be solved using supervised learning.

Methodology

The process of performing supervised learning consists of 3 phases: preparing a
labeled dataset, training a supervised learning algorithm and testing the trained al-
gorithm. The fact that the dataset needs to be labeled, means that every sample in
the dataset needs to be accompanied with the class it needs to be classified in.

The dataset is then split into a training and a test set, which can happen in various
ways. One commonly used and simple approach is called holdout, which involves
keeping back a part of the dataset to use as a test set (often around 1/3" of the full
set) [52, 53]. Another way is by using k-fold cross-validation, a method in which the
dataset is split in k parts (k = 5 is proven to be a good starting point [54]) and the
algorithm is ran k times, where each time a single different part of the dataset serves
as test set. After k runs, the average performance is calculated.

Following the splitting strategy chosen, the parts intended for training are pro-
vided with the corresponding labels to the algorithm, and the algorithm starts to
look for relations between the properties of the given samples and the labeled classes
to which the samples belong to.



16 Chapter 3. Used Malware Classification Techniques

When training has finished, a well-trained algorithm should be able to correctly
classify any presented sample. In order to test to what extent the algorithm is well-
trained, the algorithm is executed on the part of the dataset intended for testing. The
predicted outcome of the algorithm is compared to the labels belonging to the test
set, and the performance of the algorithm is calculated [55].

Overfitting and Underfitting

It is not uncommon that a trained classification algorithm does not perform well
on classifying samples in the test set. In many cases, this is due to the fact the the
algorithm is either overfitted or underfitted.

When the algorithm is overfitted, it has constructed a model that is over-adjusted
to the training data. The negative consequence of this is the fact that noise in the
training set is treated as useful information, making the model way too specific.
When the test set is provided to the algorithm, the algorithm makes decisions based
on the noise in the test set, but since noise is random and meaningless, the results
are less accurate. Overfitting can be recognized by a high training, but low testing
performance [56].

The opposite of overfitting is underfitting. When a model is underfitted, it has
not been able to capture details in the training set that indicate to which class a
sample belongs. Therefore, the model does not perform well on classifying the test
set. Underfitting can be recognized by a low training and testing performance [57].

3.1.2 Deep Artificial Neural Network
Structure

Artificial neural networks are acyclic graphs that try to simulate the human brain.
They consist out of so-called neurons, which are nodes that are capable of storing
a value. These neurons are to some extent interconnected via edges which hold a
certain weight w, thus forming a network.

Each neural networks is structured into several layers. It has an input and an
output layer, which consist of m and n nodes respectively, where m is the number of
features a sample has, and n the number of classes that the data must be grouped
in. Between the input and output layer are a number of hidden layers, which may
vary in size. A general model of a neural network is shown in Figure 3.1. When
a network has multiple hidden layers, it may be qualified as a deep artificial neural
network [58, 59].

Basic Principles

A single neuron i, located in any non-input layer of a trained neural network, be-
haves as follows: the vector of values of the previous layer, which we will call x, is
passed on through the edges, and multiplied by the weights w; that the node assigns
to the edges. The bias b; of the node is added to the outcome of the multiplication,
resulting in a; = w] - x + b;. An activation function f, which maps the input to a
fixed range, is then applied to 4;, resulting in a final value of y; = f(w] - x + b;). A
schematic overview of this calculation is shown in Figure 3.1.

This calculation is performed simultaneously for an entire layer, by using the full
matrix W and the full vector b. The calculation for a complete layer then looks as
follows:

y=f(WT-x+Db)
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FIGURE 3.1: Schematic overview of a neural network and the propa-
gation function of a neuron [60].

where the activation function f is applied elementwise to the vector. All neurons
in the network perform this calculation, layer after layer, starting at the first hidden
layer. This process is called forward propagation.

Because of this, the value of every node in the next layer is influenced by a well-
chosen mix of nodes in the previous layer. Since nodes in the previous layer contain
low level features, they can serve as building blocks for every node in the next layer,
making the next layer able to capture higher level features. This process repeats until
the output layer, where a final class is chosen for every sample.

During training, several batches are created from the training samples. The net-
work processes the training set batch-by-batch and compares its output to the de-
sired output. When the output differs from the desired output, the difference in
values is propagated back through the network and the weights of the edges are ad-
justed in order to minimize the loss (i.e. the outcome of a chosen loss function which
calculates the numerical difference between the given output and the desired out-
put). These adjustments are determined by a chosen optimizer function, which is
designed to choose adjustments reducing the loss as efficient as possible [61]. This
process is called backpropagation.

Every full training cycle of the network on the dataset is called an epoch, whereas
a full training on a single batch is called an iteration. So, if the training set consists
of 1000 samples and the chosen batch size equals 500, it will take two iterations to
complete an epoch.

Peculiarities and Parameters

Since neural networks are, like any other supervised learning technique, susceptible
to overfitting, several measures exist to prevent the algorithm from focusing on ir-
relevant details. Examples of such measures are the use of early stopping, input noise
and dropout. The intuition behind these methods will be explained in this section.
The first example of overfitting-preventing methods is called early stopping, be-
cause it causes the algorithm to stop training once training does not cause significant
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improvement anymore. There are several ways to detect this, such as checking the
accuracy at the end of every epoch and checking if the accuracy has not improved
compared to the accuracy results of the previous n epochs. In this way, the algorithm
has no chance of fitting the model too much to the training set [62].

The use of input noise causes that some of the values inside the input layer are
set to a different value. By doing this, the algorithm needs to be more robust in order
to keep classifying the samples correctly, since it cannot rely on every single detail
in the input data anymore. In this way, the algorithm tends to stop overfitting [63].

The third example, dropout, removes a fraction of the edges. When a dropout of
0.11is applied to the edges between layer r and s, 10% of all edges between r and s are
removed. In this way, some of the information cannot traverse any further through
the network. In case of details which are only present in a few nodes, the chance
that they are lost is quite large; more generally related features that are stored in
multiple nodes and therefore passed on over multiple edges, remain available in the
network [64]. In this way, the algorithm is forced to generalize its knowledge, and
thus the chance of overfitting is reduced.

A neural network has many parameters. Not only do the number and size of the
layers vary, also different choices in activation functions exist, as well as parameters
regarding e.g. dropout and input noise. Because the choice of parameters influences
the performance of the algorithm, the most optimal choice of parameters needs to be
found. Having many parameters makes it hard to find this optimal choice. Never-
theless, the optimal choice can be approximated using hyperparameter optimization
techniques, such as grid search and random search [65].

3.1.3 Random Forest Classifier
Structure

A random forest classifier is a classification algorithm that uses multiple decision
trees. A decision tree is build up from a root node at the top, followed by decision
nodes and leaf nodes. These nodes are connected in a tree-like fashion. The root
node and every decision node contain a question for which, in most cases, 2 answers
are available: yes or no. Going through this tree from root to leaf will lead to a
decision. A general model of a decision tree can be found in Figure 3.2.

Basic Principles

Each decision tree is trained on a subset of features of the provided training set. To
predict the class belonging to a sample during the testing phase, the sample is fed to
all trees, and the predicted outcomes of all trees are collected. Once all outcomes are
available, the average outcome is taken or majority voting is performed [66].

During training, a decision tree is set to find the right questions for determining
the class of a sample as efficient as possible. This happens by searching through the
available features and checking what the result of a possible split would be. The
progress made by a split is often expressed using the Gini index or the information
gain. By starting off at the root and keep making splits until no further useful splits
can be made, a decision tree is constructed [67, 68].

Because the decision trees in a random forest classifier are trained on different
features, different results are provided upon predicting a sample’s class. By training
multiple trees on slightly different sets of features and taking the average of the

1 Source: https:/ /www.packtpub.com/sites /default/files / Article-Images/B03905_05_01.png
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prediction results, the result is less prone to overfitting and noise in the training set
compared to an approach where a single decision tree is trained on the complete set
of features [66].

Peculiarities and Parameters

A random forest classifier does not have as many parameters as a neural network.
One of the most important parameters for a random forest classifier is the number
of decision trees it has. Other parameters include limits to the width and depth of
the trees and whether the progress made by a split is calculated using the Gini index
(used to calculate the difference in purity between the current and the resulting dis-
tribution of classes) or the information gain (representing the difference in entropy
between the current and the resulting distribution of classes). The Gini index is used
as metric for finding the optimal decision for all experiments in this thesis.

3.2 Classification Performance Metrics

In order to evaluate and compare the performance of both classification algorithms,
we adopted the metrics used in [1] and [2], since this enables us to compare our eval-
uation results to the performance stated in [1] and [2]. This section briefly explains
these metrics briefly.

Several classification metrics are based on values which can directly be derived
from a confusion matrix, a matrix showing the relation between the actual class of
samples and their predicted class. A general example of a confusion matrix is shown
in Figure 3.3.

Note that some classification problems are binary (e.g. classifying whether an
email message is considered to be spam or not, classifying if a patient has a disease
or not, or checking if a product may be sold or not), whereas other classification

2 Source: https:/ /gabrielelanaro.github.io/public/post_resources/multiclass /text4384.png
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FIGURE 3.3: General model of a confusion matrix.?

problems are multiclass classification problems. Examples of multiclass classification
problems are authorship attribution and malware family classification with more
than 2 different authors or families.

In case of multiclass classification problems, performance metrics like recall or
the Fl-score are not directly applicable for the problem as whole, but only for eval-
uating the performance on a single class (does sample x belong to class A? instead of
to what class does sample x belong?). However, the (weighted) average of such scores
over all classes can be used as metric for the problem as a whole.

This section describes the metrics that are used in this thesis.

3.2.1 Recall / True Positive Rate (TPR)

The recall, also known as true positive rate or sensitivity, of a class A is defined as the
number of samples correctly identified by a classification algorithm as A divided by
the total number of samples labeled as A in the dataset, and can be denoted as:

TP
TP +FN

It therefore indicates how well an algorithm is able to classify the relevant samples
from a certain class as being in that class.

3.2.2 False Positive Rate (FPR)

Likewise, the false positive rate, also known as fallout, aspecificity or 1 - specificity, of
a class A is defined as the number of samples incorrectly identified by a classifica-
tion algorithm as A divided by the total number of samples not labeled as A in the

dataset, and can be denoted as:
FP

FP + TN

It therefore indicates to what extent an algorithm fails in classifying samples which
do not belong to class X as being not in class X.

3.2.3 Precision

The precision, also known as positive predictive value, expresses the ability of the clas-
sifier to not mark a sample which is not in class A as being in class A. It can be
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denoted as:
TP

TP + FP

3.2.4 F1-Score

The Fl-score is defined as the harmonic mean of precision and the recall, which can

be written as: o
precision - recall

precision + recall

3.2.5 ROC-Curve

The Receiver Operating Characteristic-curve, is a plot of the TPR against the FPR under
various thresholds. The threshold determines in this case what minimal outcome
probability is needed to classify a sample as a positive. By shifting this threshold,
the behavior and robustness of a binary classifier can be explored.

Receiver operating characteristic
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FIGURE 3.4: Example of a ROC-curve.

When the ROC-curve is plotted, the area under the curve (AUC) can be calculated.
This allows us to reason about different models. Ideally, we want a model that has
100% TPR and 0% FPR, which will result in an ROC that only hits the point (1,0),
and has a corresponding AUC of 1. The higher the AUC, the better a classification
algorithm is considered to be. As shown in Figure 3.4, random guessing results in
a straight ROC-curve and an AUC of 0.5; every algorithm that performs better than
random, has a higher AUC.

3.2.6 Accuracy

Accuracy is a basic and commonly used classification performance metric, which is
directly applicable on both binary and multiclass problems. It represents the number
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of good predictions divided by the number of all predictions made, denoted as:

TP +TN
TP + FP + TN + FN

In Figure 3.3, this number of good predictions equals the sum of the values of the
green cells. The advantage of working with accuracy is the fact that it is easy to
calculate and very intuitive to understand.

However, when working with imbalanced datasets, accuracy could be a mislead-
ing metric. Imagine that a given dataset would consist for 95% of samples from class
A, and that the remaining 5% belongs to class B. When a classifier would classify the
whole dataset as belonging to class A, without even looking at the samples itself, it
would retrieve a accuracy of 95%, which is considered to be quite good. However,
the algorithm would be useless as meaningful classifier.

To mitigate this problem, additional metrics which do not take class imbalance
into account must be used, e.g. by taking the unweighted average of Fl-scores over
all classes. By taking an unweighted average, misclassification of samples from
smaller classes have a larger impact on the resulting score.
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Chapter 4

Collecting a Dataset of
State-Sponsored Malware

A supervised classification algorithm is only able to learn based on labeled data that
serves as a ground truth. It is therefore of major importance for this research to have
proper, labeled malware data at our disposal. Since the dataset used in [1] is not
publicly available, the dataset used in [2] lacks state-sponsored samples and the fact
that no ready-made datasets with state-sponsored malware are available, we need
to come up with our own dataset of state-sponsored samples.

However, it is not easy to obtain labeled state-sponsored malware samples from
open sources, due to the fact that not many samples are around. This is partially
caused by the fact that the samples are kept secret, and are only occasionally re-
vealed to the public [69]. Moreover, many malware databases that we encountered
have a lack of structure, making it hard to select state-sponsored samples. The need
for proper data on the one hand, and the lack of publicly available state-sponsored
samples on the other hand, is a problem. This chapter describes a way to solve this
problem, involving the use of threat intelligence reports to gather malware samples
and the use of sandbox reports of the gathered samples as input for the classification
algorithm.

4.1 Collection Method

Both approaches that we evaluate and compare make use of sandbox reports as in-
put. Therefore, we need to come up with a dataset of samples and corresponding
sandbox reports. So, the collection of the dataset consists of the collection of mal-
ware samples and the collection of sandbox reports. Both processes are described in
the sections below.

4.1.1 Collecting Samples

Attributed state-sponsored malware samples can be found with the help of threat
intelligence reports published by companies like FireEye, F-Secure and Kaspersky
(e.g. [4, 70, 71]). Such reports often include an appendix with so-called indicators of
compromise (IOCs), which consist of file hashes of samples or network traces iden-
tifying a specific piece of malware; in this way, such IOCs are used as an unique
reference to a malware sample or family.

By looking for many threat intelligence reports and copying the mentioned file
hashes from those reports, we created an aggregated list of file hashes of malware
samples. This list is then used to download the samples from any larger malware
database, since every hash refers to an unique malware sample.
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Most intelligence reports where found using an overview of APT groups by Fire-
Eye [4] as starting point. Also overviews like the Google Docs Spreadsheet "APT
Groups and Operations’ by Florian Roth [72] provide links to many useful malware
hashes.

Although threat intelligence reports contain numerous file hashes, it would be
better for some classes to have more samples, since the smallest class only consists
of 32 samples. The lack of samples from reliable sources is mainly due to several
complications described in Chapter 10. Therefore, we've investigated additional
sources of malware samples like ThreatMiner [73], but since such websites fail in
substantiating claims to which family or actor a sample belongs, these additional
sources are neglected for this particular research.

Apart from keeping the reliability of the used sources as high as possible, a some-
what equal distribution of nation-states and families is sought for as well during
the collection of the samples. This means for example that many available samples
that allegedly originate from China are ignored, since the dataset already contained
many Chinese samples.

For this research, VirusTotal [74] is used to download samples from, using the
VirusTotal APL In total, 4,449 samples were requested from VirusTotal, from which
3,594 unique samples were available for download. The samples allegedly origi-
nate from 12 different state-sponsored APT groups spread over 5 countries, namely
China, North-Korea, Pakistan, Russia and the USA. All retrieved samples and an
overview of all requested samples and the sources from which their file hashes are
obtained can be found online *.

4.1.2 Collecting Sandbox Reports

Having collected the samples, we need to retrieve sandbox reports about the sample
as well, since these reports are used as input for the classifier. For each sample, a
basic sandbox report is downloaded from VirusTotal as well. This report is written
in JSON-format and contains some file information, findings of anti-virus companies
and a brief overview of the loaded libraries and behavior of the malware.

Moreover, the samples are fed through an API to two other sandboxes, namely
Cuckoo [51] and VMRay [75]. This is done in order to receive additional information
about the samples which is not included in the reports from VirusTotal. An example
of such information is a list of all API calls with arguments a sample performs, which
is needed in the approach of Am17.

There is a high probability that not all samples are executed successfully in the
sandbox, due to a sudden termination (caused by a bad configuration) or the appear-
ance of misleading behavior (caused by sandbox evasion techniques as described in
Section 2.2.2). However, unsuccessful runs still generate sandbox reports that pro-
vide some information which can be used for classification. Nevertheless, it is worth
finding out what the influence of unsuccessful runs is on the performance of the
classification algorithms.

4.2 Data Preprocessing

After the malware samples have been downloaded from VirusTotal and the corre-
sponding sandbox reports have been retrieved as well, several steps are performed

! The repository containing the dataset is available via https:/ /cyber-resear.ch/ APTMalware.
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to complete and improve the dataset. These steps consist of duplicate detection, fil-
tering the sandbox reports to remove unusable information and thus reduce the file-
size. Moreover, the data is transformed into a format that suits a supervised learning
algorithm.

4.2.1 Duplicate Detection

Because different types of hashes are used online to refer to malware samples, some
samples are requested twice (e.g. once using the corresponding MD5 hash, and once
using the corresponding SHA-1 hash of a sample). These duplicate samples are de-
tected by calculating the SHA-256 hash for every sample and checking if some hashes
appear multiple times. This was the case for multiple pairs of samples. For each of
the pairs, one sample and corresponding sandbox reports have been kept.

4.2.2 Filtering Sandbox Reports

Some of the collected sandbox reports have a filesize of more than 300MB, mainly
made up of large chunks of data which is irrelevant for performing authorship at-
tribution. In the case of the reports generated by Cuckoo, these chunks are filled
with buffers which are used as an argument of API calls. Such buffers are often en-
countered more than once in a single report, since the corresponding API calls were
executed multiple times during execution in the sandbox.

In case of the reports generated by VMRay, the large filesize is owing to an exten-
sive amount of reported information on process dumps, which hardly contain any
information that is useful in a bag of words approach.

These irrelevant chunks are removed using jq [76], a command-line JSON pro-
cessor which is capable of modifying large JSON-files. The reports from VirusTotal
do not contain large chunks of irrelevant data, and are therefore not filtered.

4.2.3 Extracting API Calls

Some extra preprocessing is performed using jq [76] in order to extract the API calls
(referred to as primary features in [2]) and their arguments (referred to as secondary
features in [2]) from the Cuckoo reports. This API call extraction is needed to evaluate
the performance of Am17 stated in the original paper, since the original paper uses
API call extraction. The approach of using only API calls and their arguments as
features is specifically designed for Cuckoo reports and cannot be used on other
sandbox reports used in this paper, since these sandbox reports do not mention the
executed API calls.

In order to establish the secondary features as described in [2], the 500 most com-
mon arguments per APT group are extracted, after which the arguments that occur
in multiple APT groups are removed. The resulting arguments are candidates for
static secondary features. From these secondary features, one feature per class is
used. This features needs to be manually selected on beforehand, based on how
characteristic the API call argument is for a given class. Therefore, the use of these
secondary features is questionable, since it entails the provision of manually selected
features to the algorithm, whereas one could argue that a proper classification algo-
rithm needs to discover the relevant features on its own.
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4.24 Creating a Bag of Words

In order to use the dataset as input for a supervised learning algorithm, the data
needs to be transformed into a suitable format.

Since we want to compare Ro18 and Am17 on our dataset, we convert the dataset
using the bag-of~words model, because this is used by Ro18 and Am17 as well. A bag
of words is a matrix indicating the frequency of a set of words in each file. This matrix,
denoted by M, is constructed by extracting all words from every file, and selecting
the top n most frequent words for further use. The matrix is filled, such that element
M;; represents the frequency of word j in file i. The bag of words is created using the
CountVectorizer from scikit-learn [77].

A boolean value, indicating whether a given word appears or not in a report,
can be chosen as well instead of the frequency of a word, but since a boolean value
contains less information, the choice is made to use the frequency of appearance in-
stead of a boolean value. However, it is still worthwhile to compare the performance
achieved on a binary bag of words compared to a non-binary bag of words.

Moreover, other models for representing the data could have been used as well,
such as tf-idf. Future work might include research to find out which method causes
best performance.

4.3 Overview of the Collected Dataset

The characteristics of the final dataset, after being preprocessed, can be found in Ta-
ble 4.1. Several assumptions have been made during the construction of the dataset.
Firstly, we assume that an APT group is only sponsored by a single country, unless
explicitly stated otherwise, which is quite a regular assumption. Secondly, whenever
a threat intelligence report describes a single APT, all samples that are referred to
without explicit information are considered to have that specific APT group as only
author. This assumption is not trivial, since it excludes the possibility that a sam-
ple is used by multiple APT groups. However, it is necessary in order to perform
classification, since the responsible APT group would otherwise stay uncertain.

The construction of the dataset did cost approximately a month. This was largely
due to the fact that it is hard to obtain state-sponsored samples, and the fact that
some unreliable sources were used as well at first. With the knowledge of some
useful resources and methods to collect samples, the process could be repeated in
approximately 1 or 2 weeks.

Note that the number of Chinese and Pakistani samples is significantly higher
than the number of samples originating from the USA (2028 and 1085 Chinese and
Pakistani samples respectively, compared to 395 American samples) and that the
distribution of APT groups is not equal as well. Such imbalance causes the dataset to
be harder to classify compared with perfectly balanced datasets, since the algorithm
tends to learn less about minority classes or even ignore those classes. However,
imbalanced distributions cause the trained algorithms to be more robust to handling
with real-world scenarios where data imbalance may occur as well.

4.4 Dealing with Imbalanced Datasets

A possible way of dealing with imbalanced datasets is the use of undersampling
and oversampling [78]. Random undersampling reduces the number of samples in the
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Country APT Group Family # Requested | # Downloaded | # Missing VMRay
China APT1 1007 405 0
China APT 10 ia. PlugX 300 244 12
China APT 19 Derusbi 33 32 1
China APT 21 TravNet 118 106 5
Russia APT 28 "Bears’ 230 214 11
Russia APT 29 "Dukes’ 281 281 0
China APT 30 164 164 0
North-Korea | DarkHotel DarkHotel 298 273 2
Russia Energetic Bear Havex 132 132 0
USA Equation Group | Fannyworm 395 395 0
Pakistan Gorgon Group | Different RATs 1085 961 12
China Winnti 406 387 2
Total 4449 3594 45

TABLE 4.1: Characteristics of the Collected Dataset

majority classes and can be implemented by simply picking less samples from the
majority groups. Using oversampling, extra samples are generated for the minor-
ity classes, making the classes balanced again. Possible techniques for this include
SMOTE [79] and ADASYN [80], or just a naive approach involving sampling with re-
placement called random oversampling, where samples of minority classes are picked
multiple times. Both random undersampling and random oversampling are imple-
mented in this research using the imbalanced-learn library [81].

However, using both undersampling and oversampling with a bag of words-
based approach gives rise to some problems. An imbalanced dataset influences the
resulting bag of words, because only the n most frequent words are included. There-
fore, keywords for minority classes are likely to get ignored since their frequency
in the total dataset is too low. Because of this, undersampling and oversampling
need to take place before the bag of words is constructed, otherwise the keywords
of minority classes are lost before anything is done to fix the imbalance. Some ad-
vanced undersampling and oversampling methods like SMOTE and ADASYN gen-
erate new samples based on existing samples; translated to this domain, it would
mean that realistic sandbox reports need to be generated, based on existing reports.
Since this is very hard to achieve, such advanced undersampling and oversampling
methods are not used in this research.
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Chapter 5

Experimental Data & Setup

Before Ro18 and Am17 are compared in Chapter 8, they are first individually evalu-
ated on the data set obtained in Chapter 4, followed by a comparison of the obtained
results and the results noted in the original papers describing Ro18 and Am17. The
goal of this evaluation is to get the maximum performance out of Ro18 and Am17
for this dataset without changing the input format fundamentally, and checking if
this performance gets close to the performance described in the original papers.

This chapter describes the general experimental setup for this evaluation. Chap-
ters 6 and 7 describe the configuration used for Ro18 and Am17 respectively, fol-
lowed by the results achieved by each approach.

5.1 Constructing Training and Test Sets

Once the data is retrieved and preprocessed as described in Chapter 4, it is divided
into a training and a test set. However, this brings in an important issue.

If malware from all different APT groups are contained in both the training and
test set, the neural network could tend to learn which APT groups belong to a certain
country, and is thus only able to answer Question B. However, when APT groups are
strictly separated in training and test set, the neural network is forced to learn what
APT group-transcending malware characteristics are indicators for a given country, and
is thus able to answer Question A.

Although the latter approach gains more information on a successful attempt, it
is way more difficult to do so, since it strengthens requirements on input data ! and
it is harder to extract such high-level properties which are not directly present in
brief JSON-reports.

The problem of choosing the right split of data in order to learn about class-
transcending properties goes analogous with the following example:

Imagine that you need to classify 50 people from 10 different households on
the city they live in. All people live in either New York or Washington. You
first get to see 40 people, of which you get to know many properties, like their
height, weight, facial features, family name, level of education, income etc., as
well as the city they live in (analogous to the training set). When looking at
those 40 people, you try to figure out rules that are helpful for determining in
which city the other 10 people live in (analogous to the test set).

! This mostly concerns the distribution of both the training and test set. Instead of only requiring
two equal-sized populations from two different nation-states, an additional requirement is imposed.
This requirement is that the population of all samples from any nation-state can be split into a training
and test set using a 80-20 ratio, without having a APT group with samples spread over both the training
and test set.
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It could be possible that the only rule you make is based on the family name
of the people; in this way you could see from which household they are and by
looking at the people from that household you saw earlier, you could determine
in which city they live. However, the actual question you are answering then
is "From which household is this person?’, instead of finding more general ground
truths about people living in New York and Washington.

This problem can be solved by splitting the people in such a way, that 2
households of 5 people (one household from New York and one from Wash-
ington) form the test set, and that the other households make up the training
set. In this way, making rules based on family names would not work anymore,
since the test set only contains family names that you have never seen before.
Because of this, you are forced to learn family-transcending properties about the
inhabitants of New York and Washington.

5.2 Tested Scenarios

The paper describing Ro18, [1], describes 3 different authorship attribution scenarios
to train a classification algorithm for. These scenarios can be formulated as follows:

A. Authorship attribution on country level, based on unseen APT groups
B. Authorship attribution on country level, based on earlier seen APT groups
C. Authorship attribution on APT group level

The use of different scenarios enables us to gain more information about the clas-
sification capabilities of both approaches compared to using only one scenario. Note
that the separation technique described in Section 5.1 is needed in order to perform
authorship attribution on country level, based on unseen APT groups (Scenario A).

5.3 Sandboxes Used

This section provides an overview of the content of the 3 sandboxes that are used.

5.3.1 Cuckoo

Cuckoo reports contain information about many different aspects of a sample. Both
static as well as dynamic analysis is performed and all results are included in a single
report. Moreover, paths to screenshots and other output files (e.g. the dropped file
in case the sample drops a file) are included in the report as well. The lay-out of the
report can be found in Table 5.1.
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Section Content
info Details about sandbox run, like duration and type of VM used
signatures Hits on any signatures configured in the sandboxes
target File information about the sample, like several hashes
network Logs and statistics about network activity
static Structural characteristics, like content of PE headers
behavior Execution data, including evoked API calls and processes
debug Logging, useful for debugging incorrect or crashing runs
screenshots Paths to the screenshots made by the sandbox
strings Output of the strings command on the sample
metadata Additional output files as a result of the sandbox run

TABLE 5.1: Lay-out of a Cuckoo report

Since Cuckoo reports contain both proper static and dynamic analysis, we consider
Cuckoo reports as a good representation of a malware sample. The API calls that are
extracted for as described in Section 4.2.3, can be found in the section behavior.

5.3.2 VirusTotal

The reports from VirusTotal contain information about the submission of the sample,
as well as the results of scans performed by numerous anti-virus solutions. The lay-
out of VirusTotal reports can be found in Table 5.2.

Section Content
vhash Unique VirusTotal hash
submission names Other filenames used for the same file
additional info Basic static analysis, like API imports
scans Results of numerous anti-virus scans
tags Tags linked to the sample
other File hashes, timestamps etc.

TABLE 5.2: Lay-out of a VirusTotal report

Since VirusTotal reports only contain some basis static analysis and the results of
scans of anti-virus solutions, and no behavioral analysis, we consider these reports
to be helpful in the process of classification, but not as a complete representation of
a malware sample.

5.3.3 VMRay

For most submissions to the VMRay sandbox, several reports are generated. When
the sandbox qualifies the uploaded sample as an executable sample, it generates 3
reports: one containing static analysis and two containing dynamic analysis using
two different execution environments. The structure of the reports generated during
a static run can be found in Table 5.3. The sections that are added in case of dynamic
analysis can be found in Table 5.4.
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Section Content
analysis details Details about sandbox run, like timestamp and duration
artifacts Extracted characteristics, like used domains or registry keys
classification Result of the classification performed by VMRay
extracted files Paths to files which are extracted during sandbox execution
remarks Any errors of warnings encountered during sandbox execution
sample details File information about the sample, like several hashes
type Type of the report (summary)
version Version of the report
vm and analyser details Configuration of the VM
vti Results from the VMRay Thread Identifier
yara Settings regarding the use of Yara rules
TABLE 5.3: Lay-out of a VMRay report containing static analysis
Section Content
process dumps Dumps made by the sandbox of running processes
processes Details about the running processes during sandbox execution
screenshots Paths to the screenshots made by the sandbox

TABLE 5.4: Additional sections of a VMRay report in case of dynamic

analysis

Compared to the reports generated by Cuckoo, the VMRay reports focus more
on process dumps and less on network activity. Moreover, the reports generated
on static analysis do not contain much information. For example, basic information
such as PE headers are not present in these reports.

In order to use all information available, we merge the reports generated by both
static and dynamic analysis into a single VMRay report. Just as it is the case with
Cuckoo reports, we consider the combination of static and dynamic VMRay reports
as a good representation of a malware sample.

5.4 Overview of Training and Test Sets

The original paper describing Am17 uses the extracted API calls and arguments as
only features to prevent overfitting [2]. However, methods exist which use random
forest classifiers to select relevant features, implying that a random forest classifier
is able find relevant features in large feature sets by on its own [82]. Therefore, we
evaluated Am17 using the full sandbox reports as well, to see if a selection of features
is really needed to prevent overfitting.

5.4.1 Used Variants

To test all relations in several variants of the dataset, 36 variants of the datasets are
constructed to evaluate Ro18 and Am17. A schematic overview of the used variants
can be found in Figure 5.1. The used variants are constructed as follows:

o A set with a strict APT group separation between the training and test set,
labeled by country (used for Scenario A). Note that only Chinese and Rus-
sian samples are included, since China and Russia are the only countries with
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multiple APT groups in the data set. This causes the problem to be a binary
classification problem, because only two classes are involved.

o A set with no APT group separation between the training and test set, labeled
by country (used for Scenario B)

o A set with no APT group separation between the training and test set, labeled
by APT group (used for Scenario C)

All mentioned sets occur in 3 different variants with respect to undersampling or
oversampling:

e No undersampling or oversampling conducted, thus kept imbalanced
e Random oversampling
¢ Random undersampling

Moreover, all mentioned sets occur in 4 fashions with respect to the used data source:

Using extracted API calls and arguments from Cuckoo reports

Using filtered Cuckoo reports

Using the original VirusTotal reports

Using filtered VMRay reports

The methods for the sampling and filtering of the data sources, as well as the extrac-
tion of the API calls and arguments, are described in Sections 4.2 and 4.4.

Cuckoo Reports
Strict APT separation Imbalanced (extracted calls and arguments)
(labeled by country)
Cuckoo Reports
No APT separation Random oversampling (filtered)
(labeled by country)

VirusTotal Reports

No APT separation Random undersampling
(labeled by APT group) VMRay Reports
(filtered)

FIGURE 5.1: Schematic overview of the used variants of the dataset.

There are 3 different properties (setup, sampling and data source)

which each occur in different variants, leading to 36 unique variants
of the dataset.

5.4.2 k-Fold Cross-Validation

In order to get a good performance estimate without reducing the number of sam-
ples in the training set too much, k-fold cross-validation is applied on the datasets,
using k = 5. This means that the dataset is split into 5 parts, and that in each of 5
runs, 4 partitions are used as training set and 1 partition as test set. The average of
the results of the 5 runs are used as a solid approximation of the performance of the
algorithm.
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Chapter 6

Evaluation of the Neural
Network-based Approach (Ro18)

In this chapter, the configuration of the used neural network is described, followed
by the experimental results and some preliminary conclusions.

6.1 Configuration of the Neural Network

The neural network that we used is based on the one described in [1], but small mod-
ifications are made to get better results. Instead of a 10-layers fully connected neural
network, one with 8 layers is used. These layers are build up following a 50,000-
2,000-1,000-1,000-1,000-1,000-500-n structure, i.e. the network has an input layer of
50,000 neurons, followed by a hidden layer of 2,000 neurons etc. The value of n is
determined by the number of output classes.

An output softmax layer is used as well, just like the described dropout and input
noise rates of 0.5 and 0.2 respectively. The ReLU activation function is used and
categorical cross entropy is used to calculate the loss. The Adam optimizer is chosen
as optimizer with the fixed learning rate of 0.0001. This network is implemented
using Keras [83] on top of TensorFlow [84]. It is used for training for answering all
questions mentioned in Section 5.2.

The learning rate is not taken straight from [1], but determined using a trial-
and-error approach, since the method used in [1] is not compatible with Keras. The
chosen learning rate of 0.0001 turns out to perform slightly better in our tests com-
pared to a commonly used learning rate of 0.001!, but it consumes more time and
computation power. Future work includes performing hyper-parameter tuning us-
ing a technique like random search [65] or bayesian optimization [85], to find the
best set of parameters in a more structured way.

6.2 Results

Running the neural network over the datasets as described in Section 5.4, the results
described below were obtained. Note that only accuracy is used as classification
performance measures in Ro18, and only results using the same metrics are compa-
rable. However, we still use multiple metrics in order to get a more comprehensive

! For example, the best results in Table 6.4 would equal 0.894 (o: 0.015) for imbalanced Extracted
Cuckoo, 0.939 (o: 0.015) for imbalanced Filtered Cuckoo, 0.980 (¢: 0.008) for imbalanced VirusTotal
and 0.948 (¢: 0.009) for oversampled Filtered VMRay. Note that the deviation of the results increases
when this higher learning rate is used, whereas the accuracy slightly drops.
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view on the performance of Ro18, which we can use for the comparison with Am17.
Each run of training and testing the algorithm took appropriately 15-45 minutes.

Since 5-fold cross-validation is used, 5 runs are executed using staggered parts
of the dataset as training and test set. The average of those runs is noted as result,
together with the standard deviation c.

6.2.1 Country-Level Authorship Attribution with Unseen APT Groups

The accuracy of the classification neural network trained for country-level author-
ship attribution with unseen APT groups (thus belonging to Scenario A) is tested to
be up to 76.6%.

Dataset | Imbalanced | Undersampled | Oversampled | Ro18in [1]
Extracted Cuckoo | 0.572 (c: 0.016) | 0.573 (¢: 0.103) | 0.583 (¢: 0.044) -
Filtered Cuckoo 0.424 (0: 0.044) | 0.416 (0: 0.075) | 0.429 (o 0.041) 0.986
VirusTotal 0.727 (0: 0.044) | 0.741 (0: 0.019) | 0.725 (0: 0.048) -

FilteredVMRay | 0.766 (o: 0.057) | 0.758 (0= 0.053) | 0.732 (c: 0.029) -

TABLE 6.1: Accuracy Results Evaluating Ro18 on Scenario A

A noticeable fact is that the use of Cuckoo reports leads to the worst results in our
case, whereas in [1], Cuckoo reports are used by default and result in good scores.
The accuracy results, shown in Table 6.1, show that the accuracy of the classifier
trained on filtered Cuckoo reports has a maximum of 0.429, which much lower com-
pared to an accuracy of 0.986 as achieved in [1].

Dataset ‘ Imbalanced ‘ Undersampled ‘ Oversampled
Extracted Cuckoo | 0.554 (¢: 0.017) | 0.570 (c: 0.103) | 0.573 (c: 0.038)
Filtered Cuckoo 0.345 (0: 0.027) | 0.387 (c: 0.097) | 0.355 (c: 0.052)
VirusTotal 0.616 (0: 0.084) | 0.669 (c: 0.028) | 0.613 (c: 0.098)
FilteredVMRay 0.687 (0: 0.090) | 0.682 (c: 0.143) | 0.647 (c: 0.070)

TABLE 6.2: F1-Score Results Evaluating Ro18 on Scenario A

The quality of the classifier performing authorship attribution with unseen APT
groups appears to be strongly dependent on the sandbox reports that are used.
The results in Table 6.2 show that the classifier which uses filtered VMRay reports
achieves a F1-score of 0.687, whereas the classifier using filtered Cuckoo reports only
gets up to a Fl-score of 0.387. Looking at the sampling strategy, all variants perform
more or less on the same level, although the undersampled dataset causes less stable
results.

Dataset ‘ Imbalanced ‘ Undersampled ‘ Oversampled
Extracted Cuckoo | 0.417 (o: 0.020) | 0.351 (c: 0.113) | 0.367 (c: 0.050)
Filtered Cuckoo 0.658 (0: 0.033) | 0.590 (¢: 0.136) | 0.648 (o: 0.055)
VirusTotal 0.386 (0: 0.067) | 0.340 (o: 0.029) | 0.384 (¢: 0.083)
FilteredVMRay 0.319 (0: 0.094) | 0.286 (¢: 0.114) | 0.351 (c: 0.071)

TABLE 6.3: FP Rate Results Evaluating Ro18 on Scenario A

This Fl-score and false positive rate are calculated in such a way, that they do not
take class imbalance into account. Therefore, these metrics are not prone to mislead-
ing results caused by class imbalance. Since the classes in this setup are imbalanced
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indeed, we can use this metric to see to what extent the accuracy could be off due to
class imbalance, since this metric is prone to distortion caused by class imbalance. In
case of this experiment, the accuracy follows the same patterns as the F1-score, and
seems therefore not to be distorted.

The false positive rate indicates to what extent the algorithm fails in classifying
samples which do not belong to class X as being not in class X. The results in Table
6.3 show that the VMRay reports lead to the lowest false positive rate, whereas fil-
tered Cuckoo reports lead to the highest. Since a low false positive rate implies that
only a few samples are attributed to an actor incorrectly and the fact that such incor-
rect attribution (i.e. stating that nation-state A launched a malware campaign whilst
they did not) could have large consequences, solutions with a low FPR are strongly
preferred. Again, the undersampled datasets cause less stable results, although the
average result of the undersampled variant is are slightly better.

This means that for authorship attribution with unseen APT groups using a neu-
ral network-based approach, it is best to use the reports generated by VMRay and
worst to use Cuckoo reports. With regard to sampling methods, there are significant
performance differences between the different strategies, but no overall best sam-
pling strategy can be selected. The classifier performs mediocre with an accuracy of
0.766, and is thus not suitable for non-experimental use. The results regarding recall,
precision and AUC can be found in Tables A.1 to A.3 respectively.

6.2.2 Country-Level Authorship Attribution with Earlier Seen APT Groups

The accuracy of the classification neural network trained for country-level author-
ship attribution with earlier seen APT groups (thus belonging to Scenario B) is tested
to be up to 98.8%.

Dataset ‘ Imbalanced ‘ Undersampled ‘ Oversampled ‘ Ro18 in [1]

Extracted Cuckoo | 0.896 (¢: 0.011) | 0.748 (¢0: 0.131) | 0.878 (o: 0.003) -
Filtered Cuckoo 0.945 (c: 0.010) | 0.907 (c: 0.006) | 0.930 (¢: 0.011) 0.978
VirusTotal 0.988 (c: 0.006) | 0.973 (c: 0.006) | 0.987 (¢: 0.003) -
FilteredVMRay 0.943 (: 0.007) | 0.918 (¢: 0.010) | 0.952 (c: 0.007) -

TABLE 6.4: Accuracy Results Evaluating Ro18 on Scenario B

Because this experiment is executed on a highly imbalanced dataset (the smallest
class, North-Korea, containing 298 samples, whereas the largest class, China, has
2028), chances exist that the calculated accuracies are affected by the class imbalance.
The accuracy results, shown in Table 6.4, are indeed affected by class imbalance.
For example, the classifier using the oversampled variant of the extracted API calls
has the lowest false positive rate, but a significant lower accuracy score compared
to the accuracy score of the imbalanced version of the extracted Cuckoo set. This
means that the accuracy results do represent the actual performance on the current
dataset with its corresponding class distribution, but they may fail to indicate on an
imbalanced dataset to what extend the algorithm has learned to differentiate every
class from other classes.
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Dataset ‘ Imbalanced ‘ Undersampled ‘ Oversampled
Extracted Cuckoo | 0.885 (¢: 0.016) | 0.737 (¢0: 0.150) | 0.868 (c: 0.005)
Filtered Cuckoo 0.941 (o: 0.011) | 0.898 (0: 0.012) | 0.916 (c: 0.016)
VirusTotal 0.985 (¢: 0.008) | 0.970 (c: 0.006) | 0.986 (c: 0.004)
FilteredVMRay 0.937 (c: 0.008) | 0.906 (¢: 0.012) | 0.946 (c: 0.008)

TABLE 6.5: F1-Score Results Evaluating Ro18 on Scenario B

The undersampled variants of the dataset scores lower and less stable compared
to the other variants, especially in the case of extracted API calls from Cuckoo re-
ports. This is likely due to the fact that the undersampled version of the dataset
containing extracted API calls is smaller?, making it harder for the classifier to find
prevailing patterns which work well for classification.

The best F1-scores are achieved using reports from VirusTotal, as shown in Table
6.5. The fact that the F1-scores are this high, means that both the precision and recall
scores are high, thus indicating that all datasets work well for authorship attribution
using earlier seen APT groups.

Dataset | Imbalanced | Undersampled | Oversampled
Extracted Cuckoo | 0.031 (¢: 0.003) | 0.064 (¢c: 0.036) | 0.030 (¢: 0.001)
Filtered Cuckoo 0.015 (c: 0.003) | 0.023 (0: 0.000) | 0.017 (o 0.002)
VirusTotal 0.003 (¢: 0.002) | 0.007 (¢: 0.001) | 0.003 (¢: 0.001)
FilteredVMRay | 0.015 (¢ 0.002) | 0.021 (¢ 0.003) | 0.014 (c: 0.002)

TABLE 6.6: FP Rate Results Evaluating Ro18 on Scenario B

When we compare the results that we achieved to the results presented in [1], the
results are similar. Although the results on the filtered Cuckoo dataset are slightly
worse, the results achieved on other datasets are better than the results presented by
Rosenberg et al.

With accuracies ranging from 0.748 to 0.988, the neural network-based classifier
is useful for solving authorship attribution with earlier seen APT groups. Especially
the variants which use VirusTotal and filtered VMRay reports are suitable for de-
ployment in non-experimental environments. The results regarding recall, precision
and AUC can be found in Tables A.4 to A.6 respectively.

6.2.3 APT Group-Level Authorship Attribution

The accuracy of the classification neural network trained for APT group-level au-
thorship attribution (thus belonging to Scenario C) is tested to be up to 98.7%.

An important remark is that the approach used here differs from the one de-
scribed in [1], where the results were retrieved on the validation set. Although it is
not clear which validation method has been used, the use of a validation set to test
the final accuracy of an approach is wrong. This is because the validation set has
been involved in training as well. When the performance of a supervised learning
algorithm is tested on data it has been training on, the outcome is biased, since the
algorithms capability of classifying unseen data is not tested at all. Unlike Ro18, our
results were retrieved on the test set.

2 Since the country represented the least in the dataset is North-Korea with 298 samples. Due to
5-fold cross-validation, 80% of the samples are included in each variant of the training set, so at most
239 samples per class are included in the undersampled dataset.
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Dataset ‘ Imbalanced ‘ Undersampled ‘ Oversampled ‘ Ro18 in [1]

Extracted Cuckoo | 0.843 (¢: 0.017) | 0.053 (¢: 0.014) | 0.816 (o: 0.015)

VirusTotal 0.984 (0: 0.004) | 0.204 (c: 0.108
FilteredVMRay 0.929 (¢: 0.012) | 0.130 (c: 0.013

0.987 (c: 0.003)
0.929 (c: 0.009)

)

Filtered Cuckoo 0.935 (0: 0.009) | 0.356 (0: 0.153) | 0.920 (c: 0.011) 0.998
)
)

TABLE 6.7: Accuracy Results Evaluating Ro18 on Scenario C

Apart from the undersampled variants, the classifier performs well, especially
when VirusTotal or filtered VMRay reports are used, with accuracies up to 0.987.
This makes this classifier suited for use in non-experimental environments. The re-
sults based on filtered Cuckoo reports are not as high as described in [1], but our best
results are comparable to the performance described by Rosenberg et al., as shown
in Table 6.7.

Dataset ‘ Imbalanced ‘ Undersampled ‘ Oversampled
Extracted Cuckoo | 0.753 (c: 0.016) | 0.024 (¢: 0.017) | 0.733 (¢: 0.017)
Filtered Cuckoo 0.896 (c: 0.022) | 0.266 (c: 0.142) | 0.901 (c: 0.016)
VirusTotal 0.961 (¢: 0.018) | 0.114 (o: 0.064) | 0.973 (c: 0.007)
FilteredVMRay 0.877 (c: 0.023) | 0.056 (c: 0.029) | 0.887 (c: 0.008)

TABLE 6.8: F1-Score Results Evaluating Ro18 on Scenario C

Just as described in Section 6.2.2, we notice again in the results that the under-
sampled variants of the dataset perform worse than other datasets, and this time
the effect is more severe, as can be derived from Table 6.8. The fact that this effect
shows up more severe, is likely to be caused by the fact that the smallest class is
even smaller, leading to a big loss of information®. The imbalanced and especially
the oversampled datasets meanwhile, perform well, with F1-scores based on Virus-
Total reports reaching up to 0.973.

Dataset ‘ Imbalanced ‘ Undersampled ‘ Oversampled
Extracted Cuckoo | 0.014 (¢: 0.002) | 0.083 (¢: 0.001) | 0.016 (c: 0.001)
Filtered Cuckoo 0.007 (c: 0.001) | 0.057 (c: 0.014) | 0.007 (o: 0.001)
VirusTotal 0.002 (¢: 0.000) | 0.072 (¢: 0.010) | 0.001 (c: 0.000)
FilteredVMRay 0.007 (¢: 0.001) | 0.078 (¢: 0.004) | 0.007 (c: 0.001)

TABLE 6.9: FP Rate Results Evaluating Ro18 on Scenario C

Since there are 12 different APT groups in the dataset compared to 5 different
countries, the false positive rate much lower than one would expect based on the
previous 2 experiments. This is caused by the fact that in the case of multi-class
classification, the per-class number of false positives is lower than the number of
true negatives. Table 6.9 proves this: the false positive rates for the undersampled
case in this table are lower compared to those in Table 6.3, although the F1-scores in
Table 6.8 are lower than those in Table 6.2.

Moreover, the false positive rates follow the pattern when looking at Table 6.7,
from which we may conclude that the calculated accuracies are not distorted due to

3 Since the smallest APT group in the dataset is APT 19, which contains 32 samples. Due to 5-fold
cross-validation, 80% of the samples are included in each variant of the training set, so at most 26
samples per class are included in the undersampled dataset.
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class imbalance. The results regarding recall, precision and AUC can be found in
Tables A.7 to A.9 respectively.

6.3 Preliminary Conclusions

The following preliminary conclusions can be drawn from the evaluation of Ro18:

o The results differ to the results described in [1], which is not surprising since
the experiments were performed on different datasets.

e The performance of our classifiers is lower than the results described in [1]
under similar circumstances (i.e. using filtered Cuckoo reports). This could
be due to the fact that the dataset used by Rosenberg et al. is larger, perfectly
balanced and containing less different families than the dataset described in
Chapter 4, thus leading to better scores.

e The neural network used is capable of finding features which serve as indica-
tors of a country or APT group linked to a malware sample, since most classi-
fiers score decently. This also proves the fact that such features indeed exist.

e The performance achieved on answering Scenario A is not comparable to the
results achieved by Ro18 in the original paper. However, since the perfor-
mance achieved goes up to 0.766, the algorithm must have grasped to some
extent what patterns are characteristic for a certain country. This proves that
even different malware developing groups within a country tend to use sim-
ilar techniques, infrastructures or coding styles. Therefore, a trained network
could be used to extract characteristics that provide specific clues to malware
analysts about where to look for traces indicating the state behind the sample,
even when the sample comes from an unseen APT group.

e The performance achieved on answering Scenarios B and C is comparable to
the results mentioned in earlier research like [1], the paper describing Ro18,
and [3]. This proves the point that it is possible to accurately classify malware
based on country and APT group using sandbox reports.
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Chapter 7

Evaluation of the RFC-based
Approach (Am17)

In this chapter, the configuration of the used random forest classifier is described,
followed by the experimental results and some conclusions.

7.1 Configuration of the Random Forest Classifier

A Random Forest Classifier is used with 100 trees, just like described in [2], the
original paper proposing Am17. The Random Forest Classifier is implemented using
the RandomForestClassifier from scikit-learn [77].

7.2 Results

Running the random forest classifier over the datasets as described in Section 5.4,
the results presented below were obtained. Note that the same metrics are used as
classification performance measures in Am17, in order to get comparable results.
Each run of training and testing the algorithm took approximately 2 seconds.

7.2.1 Country-Level Authorship Attribution with Unseen APT Groups

The accuracy of the random forest classifier trained for country-level authorship at-
tribution with unseen APT groups (thus belonging to Scenario A) is tested to be up
to 74.1%.

Dataset | Imbalanced | Undersampled | Oversampled
Extracted Cuckoo | 0.465 (c: 0.037) | 0.458 (¢: 0.096) | 0.572 (¢: 0.074)
Filtered Cuckoo 0.475 (0: 0.083) | 0.494 (o: 0.067) | 0.458 (0 0.039)
VirusTotal 0.721 (c: 0.031) | 0.741 (o= 0.013) | 0.737 (c: 0.020)
FilteredVMRay 0.669 (c: 0.027) | 0.585 (0: 0.112) | 0.710 (c: 0.066)

TABLE 7.1: Accuracy Results Evaluating Am17 on Scenario A

The performance of the RFC-based classifier Am17 performing authorship at-
tribution with unseen APT groups is worse compared to the neural network-based
classifier Ro18, which can be seen when Table 7.1 is compared to Table 6.1.
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Dataset ‘ Imbalanced ‘ Undersampled ‘ Oversampled
Extracted Cuckoo | 0.340 (c: 0.012) | 0.396 (¢: 0.113) | 0.422 (o: 0.105)
Filtered Cuckoo 0.392 (¢: 0.116) | 0.467 (0: 0.075) | 0.347 (c: 0.019)
VirusTotal 0.595 (¢: 0.057) | 0.676 (c: 0.014) | 0.651 (c: 0.038)
FilteredVMRay 0.651 (0: 0.028) | 0.582 (¢: 0.112) | 0.688 (o: 0.064)

TABLE 7.2: F1-Score Results Evaluating Am17 on Scenario A

The use of filtered VMRay reports leads to the best performance with a F1-score
of 0.688, whereas Cuckoo reports lead to the worst results, with a maximum F1-score
of 0.467. The use of undersampling and oversampling has a positive influence on the
results. This could be due to the fact that random forest classifiers are more sensi-
tive to imbalanced datasets. It is hard to tell why undersampling sometimes works
better than oversampling and vice versa. Probably, reports that do not convey much
information could better be oversampled since no information is lost, whereas re-
ports containing too much detail could better be undersampled in order to reduce
the information available and thus simplify the problem, although it is hard to sub-
stantiate this claim.

Dataset ‘ Imbalanced ‘ Undersampled ‘ Oversampled
Extracted Cuckoo | 0.651 (0: 0.022) | 0.603 (c: 0.126) | 0.548 (o: 0.104)
Filtered Cuckoo 0.589 (¢: 0.152) | 0.510 (¢: 0.101) | 0.649 (c: 0.026)
VirusTotal 0.405 (0: 0.047) | 0.332 (0: 0.012) | 0.358 (c: 0.033)
FilteredVMRay 0.317 (¢: 0.031) | 0.328 (c: 0.098) | 0.287 (o 0.057)

TABLE 7.3: FP Rate Results Evaluating Am17 on Scenario A

Not only are the F1-scores low in this experiment, also the achieved false positive
rates are high, as shown in Table 7.3. This means that the algorithm makes in some
cases of this binary problem per class more false positives then true negatives and
so fails to identify which samples do no belong to a certain actor.

When comparing the FPR results to the accuracy results in Table 7.1, we see that
the accuracy results follow the patterns of the FPR results in the sense that results
with a lower FPR have a higher accuracy and vice versa. This means, as explained
in Section 6.2.1, that the accuracy results are not distorted by class imbalance.

Overall, the results of this experiment show that Am17 performs mediocre as
approach for authorship attribution with unseen APT groups. The accuracy results
shown in Table 7.1 prove this as well, since the maximum accuracy achieved equals
0.741. This means that the algorithm can be used for experimental purposes, but it
should not be used in non-experimental environments. The results regarding recall,
precision and AUC can be found in Tables B.1 to B.3 respectively.

7.2.2 Country-Level Authorship Attribution with Earlier Seen APT Groups

The accuracy of the random forest classifier trained for country-level authorship at-
tribution with earlier seen APT groups (thus belonging to Scenario B) is tested to be
up to 98.4%.
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Dataset ‘ Imbalanced ‘ Undersampled ‘ Oversampled
Extracted Cuckoo | 0.946 (o: 0.008) | 0.907 (¢: 0.007) | 0.937 (¢: 0.010)
Filtered Cuckoo 0.949 (0: 0.003) | 0.913 (0: 0.021) | 0.936 (c: 0.007)
VirusTotal 0.976 (c: 0.006) | 0.957 (¢: 0.011) | 0.984 (o: 0.006)
FilteredVMRay 0.956 (¢: 0.007) | 0.928 (¢: 0.009) | 0.964 (c: 0.005)

TABLE 7.4: Accuracy Results Evaluating Am17 on Scenario B

A striking difference with the results presented earlier is that in this experiment,
the Cuckoo reports perform nearly as good as the reports from VirusTotal and VM-
Ray. It therefore seems that a RFC is more able to interpret the content of Cuckoo
reports compared to a neural network, but it is difficult to explain why this is the
case.

Dataset | Imbalanced | Undersampled | Oversampled
Extracted Cuckoo | 0.943 (¢: 0.009) | 0.904 (c: 0.006) | 0.929 (c: 0.012)
Filtered Cuckoo 0.947 (0: 0.003) | 0.903 (0: 0.023) | 0.921 (c: 0.007)
VirusTotal 0.971 (¢ 0.010) | 0.955 (o= 0.013) | 0.982 (¢~: 0.007)
FilteredVMRay | 0.953 (¢ 0.009) | 0.925 (¢ 0.012) | 0.964 (c': 0.005)

TABLE 7.5: F1-Score Results Evaluating Am17 on Scenario B

Apart from this, we clearly see in Table 7.5 that the undersampled variants per-
form worse than the imbalanced and oversampled ones. This is due to, as explained
in Section 6.2.2, the fact that undersampling leads to a very small dataset and thus a
huge loss of information to learn from.

Dataset ‘ Imbalanced ‘ Undersampled ‘ Oversampled
Extracted Cuckoo | 0.016 (c: 0.002) | 0.024 (c: 0.003) | 0.017 (c: 0.002)
Filtered Cuckoo 0.015 (c: 0.001) | 0.021 (o: 0.004) | 0.015 (c: 0.002)
VirusTotal 0.007 (c: 0.002) | 0.011 (¢: 0.003) | 0.004 (c: 0.002)
FilteredVMRay 0.014 (¢: 0.002) | 0.018 (¢: 0.002) | 0.011 (c: 0.002)

TABLE 7.6: FP Rate Results Evaluating Am17 on Scenario B

The classifier is able to grasp per class which samples do not belong to the class,
causing the classifier to perform well in the sense that the chance of accusing a coun-
try of authorship falsely is kept low. This is proved by the low false positive rates as
shown in Table 7.6.

Moreover, the patterns in Tables 7.6 and 7.4 follow each other, meaning that the
accuracy results, though susceptible to distortion due to class imbalance, show no
signs of such distortion.

Ro18 is a good approach to perform authorship attribution with earlier seen APT
groups. The maximum accuracy results range from 0.946 on the extracted arguments
from Cuckoo reports up to 0.984 using VirusTotal reports, as shown in Table 7.4. This
means that this classifier can be used in non-experimental environments. The results
regarding recall, precision and AUC can be found in Tables B.4 to B.6 respectively.

7.2.3 APT Group-Level Authorship Attribution

The accuracy of the random forest classifier trained for APT group-level authorship
attribution (thus belonging to Scenario C) is tested to be up to 98.1%.
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Dataset ‘ Imbalanced ‘ Undersampled ‘ Oversampled ‘ Am17 in [2]

Extracted Cuckoo | 0.919 (c: 0.012) | 0.776 (¢: 0.023) | 0.923 (¢: 0.011) 0.930

Filtered Cuckoo 0.943 (0: 0.012) | 0.833 (0: 0.026) | 0.932 (c: 0.007)
VirusTotal 0.977 (0: 0.002) | 0.925 (c: 0.006) | 0.981 (c: 0.003)
FilteredVMRay 0.948 (0: 0.010) | 0.840 (c: 0.015) | 0.956 (c: 0.003)

TABLE 7.7: Accuracy Results Evaluating Am17 on Scenario C

When comparing the results of our experiment to the results presented by Aman
et al. in [2] using the extracted API calls from the Cuckoo reports, our results are
worse compared to the results in [2]. However, results using VirusTotal reports are
better than those presented by Aman et al., as shown in Table 7.7.

Dataset | Imbalanced | Undersampled | Oversampled | Am17 in [2]

Extracted Cuckoo | 0.861 (c: 0.007) | 0.708 (¢: 0.017) | 0.864 (¢: 0.012) 0.931

Filtered Cuckoo 0.912 (¢: 0.023) | 0.805 (o: 0.034) | 0.916 (c: 0.011)
VirusTotal 0.945 (0: 0.012) | 0.883 (¢: 0.021) | 0.953 (o 0.007)
FilteredVMRay 0.901 (c: 0.016) | 0.785 (c: 0.011) | 0.921 (c: 0.008)

TABLE 7.8: F1-Score Results Evaluating Am17 on Scenario C

Moreover, we again notice the effect that undersampling has on this experiment,
just like described in Section 6.2.3. However, the effect is much lower using a RFC-
based classifier compared to a classifier based on a neural network. This could be
caused by the fact that a RFC is able to cope better with less complex input data since
the size of the trees may depend on the size of the input data, whereas the structure
of the neural network is chosen beforehand. Once the input data is less complex or
containing less information, it could be possible that a large neural network tends to
seek complex relations and struggles to generalize its knowledge.

Dataset ‘ Imbalanced ‘ Undersampled ‘ Oversampled ‘ Am17 in [2]

Extracted Cuckoo | 0.008 (c: 0.001) | 0.020 (¢: 0.002) | 0.007 (¢: 0.001) 0.009

Filtered Cuckoo 0.006 (c: 0.001) | 0.015 (¢: 0.002) | 0.006 (c: 0.001)
VirusTotal 0.002 (c: 0.000) | 0.007 (c: 0.000) | 0.002 (¢: 0.000)
FilteredVMRay 0.005 (¢: 0.001) | 0.015 (¢: 0.001) | 0.004 (¢: 0.000)

TABLE 7.9: FP Rate Results Evaluating Am17 on Scenario C

Since the number of classes and their distribution used in [2] and the dataset
described in Chapter 4 differs (20 vs. 12 different classes), the false positive rates as
presented in [2] may differ from the numbers achieved in this experiment. As we
can see in Table 7.9, this is indeed the case, since our results for the imbalanced and
oversampled cases achieve a lower FPR compared to the results in [2].

Overall, the results achieved on datasets other than the extracted API calls from
Cuckoo reports are better than those presented in [2], the paper described Am17.
This difference in performance could be due to the fact that the extracted API calls do
not convey as much information as full sandbox reports, which can be substantiated
by the results in Table 7.7. The best classifier has an accuracy up to 0.981, making it
suitable for use in a non-experimental environment.

The results regarding recall, precision and AUC can be found in Tables B.7 to B.9
respectively.
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7.3 Preliminary Conclusions

The following preliminary conclusions can be drawn from the evaluation of Am17:

o The tested performance of the RFC-based approach matches the performance
achieved by Am17 in the original paper. In fact, the tested performance is even
better than described in [2]. A possible reason for this could be that malware
written by different APT groups differs more strongly than different criminal-
context malware families.

e The random forest classifier used is capable of finding features which serve as
indicators of a country or APT group linked to a malware sample, since most
classifiers score decently. This also proves the fact that such features indeed
exist.

e Since the performance achieved on answering Scenario A goes up to 0.741,
the algorithm must have grasped to some extent what patterns are character-
istic for a certain country. This proves that even different malware developing
groups within a country tend to use similar techniques, infrastructures or cod-
ing styles. Therefore, a trained RFC could be used to extract characteristics
that provide specific clues to malware analysts about where to look for traces
indicating the state behind the sample, even when the sample comes from an
unseen APT group.

e The classifiers used for answering Scenarios B and C are so accurate, that they
are suitable for everyday use. From this we may conclude that it is possible to
perform authorship attribution on APT and country level using a RFC.
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Chapter 8

Comparing the Two Approaches

In this chapter, a comparison is made between Ro18 and Am17. Conclusions are
drawn about the performance, advantages and disadvantages of both approaches,
based on the results described in Chapter 6 and 7.

8.1 Comparison with Respect to Algorithm

When looking at the performance of Ro18 and Am17 in general, some major differ-
ences can be found.

Firstly, the time a RFC spends on training is several orders of magnitude lower
compared to the NN. The average RFC takes at most several minutes to train, where-
as the NN takes around 15-45 minutes. The speed of the neural network algorithm
could drastically be improved by making it run on the GPU instead of the CPU [86].
Moreover, the size of the neural network could be reduced, decreasing the time
needed for training as well.

Secondly, the NN performs generally speaking slightly better than the RFC. This
difference in performance was expected, since it is generally assumed that a NN is
more able to cope with complex problems compared to a RFC. However, the differ-
ence between the performance of the NN and RFC is not large. It could be possible
that the problem is less complex than assumed (making the RFC able to cope better
with the problem), because the sandbox reports could be giving too much informa-
tion away. This effect is checked in Chapter 9 and discussed more extensively in
Chapter 10.

8.2 Comparison with Respect to Sampling

Since the dataset is imbalanced, undersampling and oversampling is used to miti-
gate the effects of an imbalanced dataset, as described in Section 4.4. When looking
at the influence of sampling on the results achieved, it is impossible to find the most
optimal sampling strategy for all cases. In some cases, an undersampled set outper-
forms an oversampled set and vice versa.

Both effects can partially be explained by analyzing the information entropy of the
sandbox reports. Whenever a report has a high entropy, it means most words in the
report entail new, useful information, whereas in reports with a low entropy, most
words do not provide new information, but can (partially) be predicted by looking
at words mentioned earlier. We can therefore say that information entropy provides
useful insights into the information density of sandbox reports.

In case a dataset with high entropy reports is undersampled, the amount of in-
formation that is removed is high. In this way, the classes may be balanced, but the
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classifier is supplied a lot less information to learn from. Therefore, it could in such
cases be more helpful to oversample the dataset. Although the entropy drops then,
the amount of available information is retained and the classes are balanced.

On the other hand, in case the dataset has a low entropy, oversampling would
lower the entropy even further. Although the classes are balanced then, it can be-
come too hard for the classifier to find the right information in the dataset, which
leads to overfitting. In such cases, it could be more helpful to undersample the
dataset. This would mean that the absolute amount of information available is low-
ered, but the entropy remains equal.

A pattern that we noticed in the results, is that undersampling leads to higher
deviation of the results. This is caused by the fact that the reduction of the dataset
inevitably leads to the increase of variance in the results [87, 88].

8.3 Comparison with Respect to Metrics

An important metric to consider is accuracy, since it describes the overall correctness
of the predictions made by the classifiers. The accuracy results are above 90% for all
setups belonging to Scenarios B and C, with maximums per use case above 98%
using VirusTotal reports. The experiments belonging to Scenario A achieved a lower
accuracy: the maximum accuracies equal 76.6% (NN) and 74.1% (RFC). This makes
all tested classifiers perform decently, but the classifier belonging to Scenario A is
not suitable for non-experimental use due to its low accuracy.

For the specific use case of attributing malware in a nation-state context, it is
generally speaking better to have a low false positive rate than a low false negative
rate, since it is preferable to not accuse any actor at all than to accuse an actor falsely.
Looking at the results of the evaluation of Ro18 and Am17, a FPR of less than 1% is
reached for the use cases belonging to Scenarios B and C, making them very suitable
for the goal of authorship attribution in a nation-state context. In case of Scenario A,
the FPR does not get lower than 28% (28.6% for the NN and 28.7% for the RFC).

8.4 Comparison with Respect to Sandboxes

In general, the use of VirusTotal reports leads to the best performance, whereas the
use of filtered Cuckoo reports or arguments extracted from Cuckoo reports leads to
the worst performance. Since the VirusTotal reports only contain the results of the
scans of several anti-virus solutions, this result seems counter-intuitive. However,
this could be due to the fact that VirusTotal reports could give away the classification
labels by including the results of anti-virus file scans. Sometimes, the results of these
scans contain direct links to the author of the malware. This effect is checked in
Chapter 9 and discussed more extensively in Chapter 10.

Apart from that, the accuracy results achieved by only using the section con-
taining the API calls from the Cuckoo reports are better than the results achieved
by using the complete Cuckoo reports in Scenario A. This could be due to the fact
that the extracted arguments contain some extra biased information as described
in Section 4.2.3. Another reason could be that because a bag of words approach is
used with a maximum size set to the used amount of words, the creation of a bag
of words for the whole report could lead to a loss of details, since only n words are
used. When only the API calls are used, there is a higher chance that n words are
enough to capture details as well.
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Chapter 9

Extracting Human-Interpretable
Characteristics

When a classifier has been trained successfully, it contains knowledge which is used
for classifying samples. When this knowledge would be extracted from the classifier,
two important applications are made possible.

Firstly, new insights can be discovered from the relations learned by the classi-
fier. Since the classifiers used in this research are capable of discovering complex
relations involving multiple parameters, it could be possible that new characteris-
tics of an APT group or actor are discovered that have not been noticed before by
malware analysts. Such characteristics can then be further examined and verified.
Moreover, it would be possible to automate the process of knowledge extraction and
keep track of trends regarding the characteristics of an actor.

Secondly, the quality of the classifier can be examined by checking which features
are important to the classifier, and by looking how the classifier uses the features pre-
sented to it. It could for example be possible that the classifier is paying attention to
the wrong features. An occurrence of this problem is described in [89], where Shane
noticed that Microsoft Azure’s computer vision API seemed to classify images as
containing sheep by solely looking at the type of landscape that was presented in
the pictures. This meant that pictures with a certain type of landscape without any
sheep were labeled as containing sheep, whereas pictures containing sheep in un-
usual places were not classified as containing sheep. Having such a problem would
mean that the classifier needs to be retrained using a different setup.

We concluded in Section 8.4 that it could be possible that the classifiers take infor-
mation from sandboxes into account that contain direct classifications or indicators
of authorship, such as the description of triggered Yara-rules and the result of scans
by anti-virus solutions. Therefore, we use this chapter to see to what extent this is
the case. Moreover, we will briefly try to examine whether unknown characteristics
of actors can be discovered.

We will use the RFC-based approach to extract knowledge from, since this is
less complex compared to the neural network-based approach. Nevertheless, some
information is provided on how knowledge extraction could possibly be achieved
on a neural network.

9.1 Knowledge Extraction on Random Forest Classifiers

We use two approaches to extract information about the features used in the RFC.
The first approach extracts all used features with their importances from a trained
RFC, after which the most important features are selected. The second approach
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involves the manual inspection of several decision trees inside the RFC, to see in
which context the features are used and to what results they lead.

9.1.1 Feature Importance

As already mentioned in Section 3.1.3, a RFC is made up of multiple distinct decision
trees, which are trained on slightly different subsets of all available features. Those
trees are constructed during training as efficient as possible. Therefore, the decisions
that are made in the top of the tree, are the most discriminating and therefore the
most important decisions. The most important features of an entire RFC can easily
be extracted using the function get_feature_importances in scikit-learn [77].

We trained the RFC again to solve the problem of APT group-level authorship
attribution (belonging to Scenario C) using the imbalanced variants of the 4 different
datasets. We did apply 5-fold cross-validation again, in order to get a better estimate
of the most important features compared to training the algorithm once. This means
that the algorithm is trained 5 times on the same problem, each time followed by
the extraction of the most important features. After these 5 runs, the average impor-
tance is computed for all features. Finally, we choose to select the 50 most important
features per dataset. The results can be found in Tables C.1 and C.2 in Appendix C.

The most noticeable result is that the list of most important features extracted
from Cuckoo reports does not contain any direct links to malware actors or families,
whereas the list of most important features using VirusTotal and VMRay does con-
tain such links. Examples include references to Cloud Hopper (APT 10), MiniDuke
(APT 29), Fanni (better known as Fannyworm by the Equation Group) and direct
references to APT 10 and Winnti. The fact that these terms are in the list of most im-
portant features confirms the suspicion that there are direct identifiable links in the
sandbox reports and that these terms are paid much attention to by the classifiers.
This could lead to several problems, which we will discuss in Section 10.2. Future
work could include the removal of direct links from sandbox reports and examina-
tion of its effect on the performance of the classifiers.

9.1.2 Manual Decision Tree Analysis

In order to perform manual analysis on the decision tree, we examine several trees
from the list of trees given by the function get_esitmators in scikit-learn [77]. The
extracted trees are visualized using graphviz [90].

The trees that we extracted, were build up from around 425 (filtered Cuckoo)
to 650 nodes (extracted API calls from Cuckoo, VirusTotal and filtered VMRay), in-
cluding the leaves. Many different features are being used, some features multiple
times. An example of a part of a decision tree extracted from a RFC trained on a set
containing filtered VMRay reports can be found in Figure D.1 in Appendix D.

The fact that some direct links are in the list of most important characteristics also
comes back in the extracted trees from classifiers which have been trained on Virus-
Total and VMRay reports. Figures 9.1 and 9.2 show that in a trained RFC decision
trees exist which can detect almost an entire class based on a single feature. In this
case, the Equation Group can easily be identified by the features eqdrug and 6eb00-
b34d1daffad49b2f4c90841705b2c994563bde672bf35eblc46cdbl9aled. The first fea-
ture is a direct identifier to the Equation Group from the results of a malware scan
by AVG [91], the second feature is the value of the SHA-256 hash of a file dropped
by the executed malware. Although the latter feature can be used to classify nearly
a complete class at once, we do not consider it as direct feature, since a hash value
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does not reveal the actor behind the sample in a direct way, unlike the first feature,
where eq stands for Equation Group.

eqdrug < 0.5

gini = 0.87
samples = 1815
value = [177, 329, 291, 16, 105, 213, 96, 242, 158, 183
758, 305]

gini = 0.86!
samples = 1817
value = [99, 321, 214, 308, 135, 295, 751, 257, 178, 167
89, 26]
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758, 2] 26)

class = Gorgon Group

class = Gorbon Group

FIGURE 9.1: Top nodes of an extracted FIGURE 9.2: Top nodes of an extracted
decision tree from a RFC trained on decision tree from a RFC trained on fil-
VirusTotal reports tered VMRay reports

Not only do direct classifications occur at the top of the tree, the same phe-
nomenon occurs occasionally somewhat deeper in the tree. Figure 9.3 shows a split
that was encountered after 3 splits from the root node, where a feature called apt30
is used to classify malware. This feature is based on the name of a Yara-rule identi-
tying traffic from malware by APT 30.

apt30 < 0.02
gini = 0.824
samples = 563
value =3, 0, 21, 217, 98, 224, 20, 149, 93, 8, 46, 17]

class = APT 1

rals < 0.036
gini = 0.796 sﬂ':;sn;osg
samples = 504 _ 0
value = [3, 0, 21, 217, 4, 224, 20, 149, 93,8, 46, 17] | | VAUE=[0; D-ID. 0, Q:ia?f g,ou, 0,0,0,0]
class = APT 1 B

\

4 proc_74 < 0.083 B

FIGURE 9.3: Split based on a feature directly linked to APT 30

Although the examples presented only show features that directly lead to the
classification of almost an entire class, the far majority of features are common to
different APT groups, since the decision trees contain many more nodes than the
given number of classes.

A further examination of the fully extracted decision tree also reveals informa-
tion about the extent to which different APT groups develop similar malware. Since
all classes are assigned a color and all nodes have the same color as the majority
class of the node, one can in an easy manner track visually what decisions lead to
a certain class. When a branch located further down the tree is made up out of 2
colors, it means that the classifier has taken several decisions to get to the branch,
and then needs several more decisions to distinguish the classes from each other.
This could indicate that the APT groups are closely related to each other and hard
to distinguish. On the other hand, two colors that never appear together in a lower
branch, could indicate that the malware from the APT groups related to those colors
is easy to distinguish.

When we apply this analysis method to the extracted decision tree, we may
firstly conclude that the malware allegedly related to the Equation Group is one
of its kind and to a small extent comparable with malware from Energetic Bear. This
because the majority of the samples from the Equation Group is set apart after the
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first decision and the remaining samples appear in the same branch as samples from
Energetic Bear, taking multiple decisions to sort the malware of those APT groups
out.

Malware samples belonging to the Gorgon Group appear in very many different
branches in the tree, which indicates that it is hard to distinguish their samples from
other APT groups. A possible explanation could be that they reuse malware from
different actors, or that their malware samples have a great variety and are thus hard
to characterize. The last theorem is substantiated in a blog from Unit42, which de-
scribes the Gorgon Group as a ‘larger crew of individuals’, performing both targeted
as well as diverse criminal attacks using different crimeware families [92].

Another striking pattern is that the samples of APT 1 and Winnti are often in
the same branches. This may be caused by the fact that Winnti could be related to
the PLASSF, the Strategic Support Force of the People’s Liberation Army. Since APT
1 is part of the PLA as well, actors may overlap. This theory is substantiated by
401TRG [93].

9.2 Knowledge Extraction on Neural Networks

Whereas it is easy to extract rules and features importances from a RFC, a neural
network has a more complex architecture that is not suitable for easily extracting
and understanding how a combination of different features adds up to the desired
result.

Nevertheless, several approaches are described for performing analysis based on
the weights and biases in a trained neural networks. One of the first approaches, de-
scribed by Tsukimoto, is able to extract logical rules by approximating single units
of a neural function as boolean functions [94]. One of the most recent approaches
is described by Zilke et al. and is based on the use of decision trees to describe
the working of the neural network. Their approach described as algorithm called
DeepRED, which is designed to cope well with deep neural networks [95].

Both approaches do not contain an easy method for quickly determining the
importance of features, which can be solved by sensitivity analysis. This involves
leaving out different parts of the sandbox reports and providing these incomplete
reports to a trained classifier. If the performance of the classifier remains stable, the
features from the part that is left out are not very important. If the performance
of the classifier drops, it is apparently dependent on the features that were left out.
Nevertheless, this method does not provide an efficient and thorough analysis of the
used features by the classifier, since it requires iterations to find out the importance
of every single feature and does not easily provide information about features that
only work well pairwise.



53

Chapter 10

Complications Faced and
Discussion

10.1 Complications Faced

In the process of evaluating and comparing the methods Ro18 and Am17, several
complications were faced, mainly concerning the input data. The most important
complications were as follows:

e Lack of Reliable Sources: Since state-sponsored APTs mostly use targeted at-
tacks, malware samples are not as widely spread as 'regular” malware samples
are [1, 7]. Moreover, samples can be kept secret by governments, making them
unavailable for research until they occasionally get released [69]. This makes
it more difficult to get enough samples to perform supervised learning on.

e Unequal Distribution of Countries and APT Groups: In order to properly
train a supervised learning algorithm, the distribution of samples per coun-
tries and APT groups needs to be roughly uniform. Whenever this is not the
case, a supervised learning algorithm performs sub-optimal [96, 97]. Although
this problem can be mitigated, it is better to avoid imbalanced data sets at all.
However, some actors are having more aggressive malware campaigns and are
so way more on the radar (e.g. Russia or China) in comparison to other actors
(e.g. Iran or the USA). Given this fact, it is harder to have an equal distribution
of countries and APT groups.

e No Strict Separation of APT Groups: As described in Section 5.1, the strict
separation imposes an additional requirement to the input data. Because of
the lack of reliable sources and the difficulty of getting an equal distribution of
countries and APT groups, it is harder to meet this additional requirement.

e Diversity of Measures: The measures that are used in the papers describing
Ro18 and Am17 are different, causing a first proper comparison based on lit-
erature only to be infirm. Especially a proper evaluation of Ro18 is made more
difficult, since hardly any results are available.

10.2 Discussion

Although the results of the conducted experiments largely confirm the results pre-

sented in [1] and [2], we discuss several remarks to put the results into context.
Firstly, two assumptions are made in Section 4.3 to make it feasible to reason

about attribution. One of our assumptions states that a malware sample is used by
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at most one actor, enabling the possibility to label a single APT group to a malware
sample as responsible group. However, real-world scenarios may include a malware
sample or family that is used by multiple actors. For example, several core elements
of a piece of malware could have been bought on the dark web or stolen from other
actors [21]. Therefore, attribution must be performed with great care, since these as-
sumption do not always hold in reality and actors do their utmost to add misleading
traces.

Secondly, the dataset described in Chapter 4 is based on claims by anti-virus com-
panies and malware researchers. Although most claims about authorship are sub-
stantiated in corresponding malware analysis reports, they cannot be proved with
irrefutable evidence. Therefore, ground truth of the classifier is based on the "beliefs
and reasons’ of the authors of the malware analysis reports.

Moreover, the evaluated approaches Ro18 and Am17 make use of sandbox re-
ports for classification. Though sandbox reports are a great asset to easily extract nu-
merous malware characteristics [20], they could also contain information that makes
the classification biased. Looking at the contents of the report, we noted that the
description of Yara-rules and the detection information of anti-virus solutions con-
tains information about the alleged actor in some cases. It could be possible that the
classifier pays much attention to these sections in the sandbox reports. This raises
two problems:

1. The classifier is not looking at characteristics of the samples anymore, but at
claims that are done by analysts or anti-virus companies, making the results
biased. Moreover, the classifier would be incapable of solving the real problem
of classification, since it still requires (manual) analysis by others.

2. The classifier gets dependent on the quality of the anti-virus solutions and
Yara-rules that are contained in the sandboxes. When novel and not earlier
analyzed malware would be classified, these sections of the sandbox reports
would not contain as much useful information as in cases where the malware
is known to the anti-virus solutions. In such cases, it could become possible
that the quality of the classifier becomes unsatisfactory.

Apart from that, much information is thrown away using the bag of words ap-
proach, since it removes all context from a sandbox report. Whenever a JSON sand-
box reports contains boolean information for example, the boolean values are sepa-
rated from the property, making them provide almost no information at all. More-
over, the use of a bag of words involves for practical reasons an upper boundary n
to the number of words used. When a bag of words is created for a whole sandbox
report, this could lead to a larger loss of detail (since the information does not fit in
n words) compared to the creation of a bag of words on only a small section of the
report (where the information can be expressed using n words).

In the end, it is questionable how useful the obtained results are for mitigating
threats or obtaining in-depth threat detail. Although the classifier reaches a high
accuracy, it is hard to extract usable, human-interpretable knowledge from a trained
classifier. In case of random forest classifiers, it is easy to visualize the underlying de-
cision trees, but it is hard to extract high-level characteristics about different actors.
For neural networks, it is even harder to extract knowledge, since the only two tech-
niques known are sensitivity analysis and IF-THEN-rule extraction by an algorithm
like DeepRED. Furthermore, many features like the ones described in Sections 2.3.1
and 2.3.2 are not contained in the sandbox reports described in Section 5.3, which
could lead to superficial classification since the classifier could lack detailed infor-
mation to learn from.
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Chapter 11

Conclusions and Future Work

11.1 Conclusions

During the literature study, it has become clear that the topic of authorship attribu-
tion and malware family classification has been covered in literature, but that the
amount of research is limited. This is possibly due to the fact that the topic is quite
specific and plays a smaller role in academia compared to other types of institutions,
like banking, defense or government institutions or business parties like anti-virus
vendors.

Authorship attribution is a problem which involves different legal and technical
complications. Legal complications include the fact that the level of proof required
before taking further steps may vary, based on the fact whether it regards criminal
cases or cases regarding the involvement of nation-states. Technical complications,
which inhibit both attribution and classification, include the unavailability of source
code and the fact that different techniques are applied to malware to hide its origin
and intend. The possible presence of fake traces which are added to trick analysts in
drawing faulty conclusions makes the problem even more complex.

Different technical means are available to perform malware family classification
and authorship attribution on malware binaries. Also the use of supervised learn-
ing for family classification or attribution is described. Of all approaches that use
supervised learning, the ones proposed by Rosenberg et al. (Ro18) and Aman et al.
(Am17) are the two most promising state of the art supervised learning approaches
to solve malware classification problems using raw input. Therefore, we selected
these approaches and compared and evaluated them in this thesis, conducting a
first evaluation and comparison of both algorithms.

There are no labeled datasets available which contain state-sponsored malware
from different actors. Therefore, we came up with our own dataset, which will be-
come the first publicly available dataset of its kind. This dataset is constructed using
a yet never scientifically described technique involving threat intelligence reports.
Such reports contain hashes of different malware samples, together with an analysis
about the alleged actor behind the samples. By collecting numerous reports, a list of
hashes of samples is constructed. This list is then submitted to VirusTotal in order
to retrieve the corresponding samples, resulting in a dataset of 3,594 samples from
12 different APT groups, linked to 5 different countries. Used this dataset, we an-
swered the 3 research questions:

Which supervised learning techniques are optimal for performing malware au-
thorship attribution?

Both methods Ro18 and Am17 perform well on our dataset, retrieving similar results
as the papers describing the approaches. In the cases where the classifier needs to
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identify APT groups, the accuracy reaches over 98%, just as in case where the classi-
tier needs to identify countries based on samples from earlier seen APT groups. The
difference between the NN-based method Ro18 and the RFC-based method Am17
is the fact that in our setup, the RFC takes significantly less time to train, whereas
the neural network achieves slightly better results. Therefore, we conclude that a
method based on a RFC is preferred for performing first experiments and in ap-
plications which demand fast training. We suggest to use an approach based on a
neural network when the setup is not hindered by time and computational power
constraints and high accuracy plays an important role.

What type of dataset is needed for reaching satisfying attribution performance?
Although the used algorithm and its configuration plays a big role in the perfor-
mance of the algorithm, the input data is of crucial importance since all decisions
are based on this data. We evaluated the two algorithms on 4 different types of re-
ports from 3 different sandboxes. The use of VirusTotal reports results in the highest
accuracy, but since the reports from VirusTotal and VMRay include direct linkable
data (e.g. the name of the APT group or malware family), the results are likely to be
distorted to some extent. Therefore, we conclude that the dataset needed for reach-
ing satisfying attribution performance should consist of (a combination of) sandbox
reports without identifiable data, like the reports from Cuckoo.

To what extent can intelligible author characteristics be derived from a trained
supervised learning algorithm?

Intelligible author characteristics can to some extent be derived from a trained super-
vised learning algorithm. When one wants to have insight into the way the classifier
makes it decisions, one can perform analysis on the decision trees inside a RFC or
the weight-matrix inside a neural network in order to see on basis of what steps or
calculations the classifier established its decision. In some cases, this could lead to
finding some characteristics about the actor of malware family, e.g. the act that every
sample drops the same executable on the infected system. Moreover, one can derive
from the decision trees inside a RFC to what extent the malware from different APT
groups is similar. However, it is hard to extract high-level characteristics like the
preference for a certain cryptographic mechanism or a default purpose of the sam-
ple. Since there are still multiple techniques to extract characteristics apart from the
methods used by us, we conclude that further research is needed to fully answer this
question.

11.2 Future Work

Although this thesis contains numerous conclusions as mentioned above, some lim-
itations and inchoate ideas are encountered as well. These limitations and ideas
could be explored further in future work. The most important topics for future work
include:

e Finding the Optimal Preprocessing Strategy: Many choices are made with
respect to preprocessing, which influence the performance of the classifier. For
example, the choice is made to use a non-binary bag of words and to treat
all reports separately. However, it would be good to explore what the effects
are on the performance of the classifier when a binary bag of words approach
would be used or when all sandbox reports are combined. Moreover, the size
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of the bag of words could be changed to see what size causes the best perfor-
mance. An approach where the keys and values of a JSON-file are treated as
one word could be tested as well, since this will likely reduce the loss of infor-
mation. Also, looking at a more fundamental level, the use of a bag of words
could be replaced by another method, like tf-idf.

e Improve the Quality of Sandbox Reports: Not all sandbox executions that
are performed, represent the behavior of the malware well. It could be that
the execution of malware is hindered by evasion techniques or an incompat-
ible sandbox configuration. The detection and prevention (e.g. by unpacking
packed samples before feeding them to the sandbox or reducing the amount of
obfuscation) of unsuccessful sandbox runs could lead to better results. More-
over, as mentioned before, some parts of the sandbox reports contain infor-
mation provided by third parties about the malware sample, like Yara-rules
and anti-virus solutions scans. These parts could be removed, to see how the
classifier performs without clues provided from external sources.

¢ Extending the Dataset: Although the dataset used contains over 3,000 state-
sponsored samples from different countries, additional samples could still be
useful to examine the performance of the classifier on a more diverse dataset.
Therefore, further research could include experiments with a dataset that also
includes samples from other nation-states, such as Iran. Furthermore, malware
used in criminal context (e.g. the samples contained in [98]), or benign samples
could be added to the dataset. This would provide the opportunity to see
whether malware detection and classification can at once be performed using
a single classifier.

¢ Include More Features: Instead of only using sandbox reports, multiple other
features can be used as well as input data. Features from e.g. [7], [44] or [46]
could be involved, to see if the information gained from the use of these fea-
tures leads to better performance.

e Extract More Knowledge from Trained Classifiers: The problem of author-
ship attribution remains a difficult task to perform, since it is extremely hard
to point to a specific individual or organization without having lots of sec-
ondary resources like customer databases of ISPs. Moreover, this thesis did
not perform an in-depth analysis of the knowledge inside the neural network
as well as the random forest classifier. Therefore, future work could include
a further investigation of the knowledge gained by the classifiers. Moreover,
research could be performed to come up with a tool that automatically extracts
all important features involving traces of authorship in order to keep track of
development with respect to the characteristics of authors.

e Usage of Unsupervised Learning: One big issue is the lack of open, sound and
labeled malware data. Since unsupervised learning approaches are able to find
(meaningful) patterns in unlabeled data, it is useful to find out how effective
such methods are in this domain.

e Solving Related Problems Using Transfer Learning: Once a neural network is
trained, it is possible to use transfer learning to use the learned information for
a slightly different task. The example that is used in [1], the paper describing
Ro18, involved retraining the model for classifying samples on basis of family
instead of actor. It would be good to examine whether transfer learning can be
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used to solve related problems, like classifying on the behavior of malware, its
targets or e.g. intrusion mechanisms used by the malware.
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Appendix A

Additional Results of the Neural
Network-based Approach

The appendix consists of the recall, precision and AUC results of all experiments
conducted in Chapter 6.

A.1 Country-Level Authorship Attribution with Unseen APT
Groups

Dataset | Imbalanced | Undersampling | Oversampling
Extracted Cuckoo | 0.583 (c: 0.020) | 0.649 (c: 0.113) | 0.633 (c: 0.050)
Filtered Cuckoo 0.342 (0: 0.033) | 0.410 (o: 0.136) | 0.352 (0 0.055)
VirusTotal 0.614 (c: 0.067) | 0.660 (o: 0.029) | 0.616 (c: 0.083)
FilteredVMRay | 0.681 (0: 0.094) | 0.714 (o: 0.114) | 0.649 (¢: 0.071)

TABLE A.1: Recall Results Evaluating Ro18 on Scenario A

Dataset | Imbalanced | Undersampling | Oversampling
Extracted Cuckoo | 0.570 (¢: 0.017) | 0.635 (c: 0.104) | 0.624 (o: 0.053)
Filtered Cuckoo 0.351 (0: 0.025) | 0.425 (0: 0.125) | 0.362 (c: 0.052)
VirusTotal 0.660 (c: 0.091) | 0.691 (0: 0.026) | 0.651 (c: 0.089)
FilteredVMRay | 0.728 (o= 0.071) | 0.667 (c: 0.166) | 0.679 (¢: 0.045)

TABLE A.2: Precision Results Evaluating Ro18 on Scenario A

Dataset | Imbalanced | Undersampling | Oversampling
Extracted Cuckoo | 0.581 (c: 0.029) | 0.578 (c: 0.149) | 0.690 (¢: 0.058)
Filtered Cuckoo 0.417 (0: 0.059) | 0.361 (c: 0.115) | 0.386 (o: 0.085)
VirusTotal 0.767 (c: 0.041) | 0.813 (0: 0.026) | 0.804 (c: 0.026)
FilteredVMRay 0.856 (0: 0.039) | 0.790 (c: 0.116) | 0.813 (0: 0.027)

TABLE A.3: AUC Results Evaluating Ro18 on Scenario A
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A.2 Country-Level Authorship Attribution with Earlier Seen

APT Groups

Dataset ‘ Imbalanced ‘ Undersampling ‘ Oversampling

Extracted Cuckoo | 0.861 (c: 0.018)
Filtered Cuckoo 0.931 (¢: 0.012)
VirusTotal 0.984 (0: 0.011) | 0.978 (¢: 0.002) | 0.986 (c: 0.006)
FilteredVMRay 0.936 (¢: 0.013)

0.782 (0 0.144) | 0.895 (c: 0.005)
0.923 (o 0.004) | 0.932 (c: 0.009)

0.927 (0= 0.014) | 0.939 (¢: 0.011)

TABLE A.4: Recall Results Evaluating Ro18 on Scenario B

Dataset ‘ Imbalanced ‘ Undersampling ‘ Oversampling

A3

Extracted Cuckoo | 0.924 (¢: 0.016) | 0.754 (0: 0.102) | 0.855 (¢: 0.005)
Filtered Cuckoo 0.955 (0: 0.010) | 0.890 (c: 0.018) | 0.916 (c: 0.028)
VirusTotal 0.986 (c: 0.007) | 0.963 (c: 0.009) | 0.987 (¢: 0.005)
FilteredVMRay 0.941 (c: 0.010) | 0.895 (c: 0.011) | 0.955 (¢: 0.014)

TABLE A.5: Precision Results Evaluating Ro18 on Scenario B

Dataset ‘ Imbalanced ‘ Undersampling ‘ Oversampling

Extracted Cuckoo | 0.979 (¢: 0.003)
Filtered Cuckoo 0.992 (0: 0.003)
VirusTotal 0.998 (0: 0.002) | 0.998 (¢: 0.001) | 0.999 (¢ 0.000)
FilteredVMRay 0.992 (¢ 0.002)

0.913 (c: 0.110) | 0.980 (c: 0.002)
0.991 (c: 0.001) | 0.994 (c: 0.001)

0.989 (o: 0.002) | 0.994 (c: 0.003)

TABLE A.6: AUC Results Evaluating Ro18 on Scenario B

APT Group-Level Authorship Attribution

Dataset ‘ Imbalanced ‘ Undersampling ‘ Oversampling

Extracted Cuckoo | 0.753 (¢: 0.018)
Filtered Cuckoo 0.881 (¢: 0.021)
VirusTotal 0.962 (0: 0.026) | 0.188 (c: 0.073) | 0.968 (o 0.008)
FilteredVMRay 0.873 (0: 0.023)

Dataset

0.098 (0= 0.026) | 0.767 (c: 0.017)
0.366 (0 0.144) | 0.911 (c: 0.022)

0.136 (c: 0.038) | 0.876 (c: 0.009)

TABLE A.7: Recall Results Evaluating Ro18 on Scenario C

Imbalanced ‘ Undersampling ‘ Oversampling

Extracted Cuckoo | 0.771 (¢: 0.015) | 0.049 (0: 0.074) | 0.774 (c: 0.015)
Filtered Cuckoo 0.927 (0: 0.030) | 0.324 (0: 0.132) | 0.904 (c: 0.011)
VirusTotal 0.972 (c: 0.011) | 0.169 (c: 0.095) | 0.980 (¢: 0.008)
FilteredVMRay 0.888 (0: 0.023) | 0.063 (¢: 0.040) | 0.911 (¢: 0.014)

TABLE A.8: Precision Results Evaluating Ro18 on Scenario C
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Dataset ‘ Imbalanced ‘ Undersampling ‘ Oversampling

Extracted Cuckoo | 0.971 (¢: 0.004) | 0.588 (c: 0.027

VirusTotal 0.998 (¢: 0.002) | 0.803 (c: 0.038
FilteredVMRay 0.988 (c: 0.005) 0.715 (o: 0.032

TABLE A.9: AUC Results Evaluating Ro18 on Scenario C

) | 0.970 (o: 0.003)
Filtered Cuckoo 0.990 (¢: 0.004) | 0.820 (¢: 0.073) | 0.992 (¢: 0.003)
) | 0.999 (o: 0.001)
) | 0.987 (0: 0.008)
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Appendix B

Additional Results of the
RFC-based Approach

The appendix consists of the recall, precision and AUC results of all experiments
conducted in Chapter 7.

B.1 Country-Level Authorship Attribution with Unseen APT
Groups

Dataset | Imbalanced | Undersampling | Oversampling
Extracted Cuckoo | 0.349 (0: 0.022) | 0.397 (¢0: 0.126) | 0.452 (¢: 0.104)
Filtered Cuckoo 0.411 (0: 0.152) | 0.490 (c: 0.101) | 0.351 (c: 0.026)
VirusTotal 0.595 (0: 0.047) | 0.668 (c: 0.012) | 0.642 (c: 0.033)
FilteredVMRay | 0.683 (c: 0.031) | 0.672 (¢: 0.098) | 0.713 (¢ 0.057)

TABLE B.1: Recall Results Evaluating Am17 on Scenario A

Dataset | Imbalanced | Undersampling | Oversampling
Extracted Cuckoo | 0.333 (c: 0.005) | 0.405 (c: 0.111) | 0.405 (0: 0.112)
Filtered Cuckoo 0.407 (0: 0.144) | 0.494 (0: 0.089) | 0.345 (0: 0.014)
VirusTotal 0.661 (c: 0.055) | 0.692 (¢: 0.019) | 0.685 (c: 0.032)
FilteredVMRay | 0.657 (0: 0.027) | 0.662 (¢: 0.091) | 0.690 (c: 0.059)

TABLE B.2: Precision Results Evaluating Am17 on Scenario A

Dataset | Imbalanced | Undersampling | Oversampling
Extracted Cuckoo | 0.350 (c: 0.080) | 0.415 (¢: 0.143) | 0.470 (¢: 0.092)
Filtered Cuckoo 0.488 (0: 0.056) | 0.518 (0: 0.056) | 0.444 (o: 0.049)
VirusTotal 0.719 (0: 0.040) | 0.723 (c: 0.008) | 0.715 (o: 0.020)
FilteredVMRay | 0.784 (: 0.076) | 0.811 (c: 0.079) | 0.789 (o 0.069)

TABLE B.3: AUC Results Evaluating Am17 on Scenario A
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B.2 Country-Level Authorship Attribution with Earlier Seen

APT

Groups

Dataset | Imbalanced | Undersampling | Oversampling

Extracted Cuckoo | 0.930 (c: 0.011) | 0.921 (¢: 0.017) | 0.940 (c: 0.010)
Filtered Cuckoo 0.934 (0: 0.003) | 0.930 (¢: 0.006) | 0.944 (c: 0.015)
VirusTotal 0.961 (0: 0.014) | 0.964 (c: 0.010) | 0.981 (c: 0.007)
FilteredVMRay 0.937 (c: 0.014) | 0.942 (c: 0.008) | 0.958 (c: 0.007)

Dataset

TABLE B.4: Recall Results Evaluating Am17 on Scenario B

‘ Imbalanced ‘ Undersampling ‘ Oversampling

Extracted Cuckoo | 0.961 (c: 0.007) | 0.894 (¢: 0.005) | 0.921 (¢: 0.013)

Filtered

Cuckoo 0.965 (c: 0.002) | 0.895 (¢: 0.028) | 0.916 (c: 0.017)

VirusTotal 0.982 (= 0.005) | 0.949 (o 0.015) | 0.984 (o: 0.006)
FilteredVMRay | 0.974 (¢: 0.003) | 0.914 (¢: 0.014) | 0.972 (¢: 0.008)

Dataset

TABLE B.5: Precision Results Evaluating Am17 on Scenario B

‘ Imbalanced ‘ Undersampling ‘ Oversampling

Extracted Cuckoo | 0.994 (¢: 0.002) | 0.988 (c: 0.004) | 0.994 (c: 0.002)

Filtered

Cuckoo 0.996 (0: 0.000) | 0.993 (¢: 0.003) | 0.996 (c: 0.001)

VirusTotal 0.999 (c: 0.000) | 0.997 (0: 0.001) | 0.999 (c: 0.000)
FilteredVMRay 0.997 (0: 0.001) | 0.993 (¢: 0.001) | 0.998 (¢: 0.001)

B.3 APT

Dataset

TABLE B.6: AUC Results Evaluating Am17 on Scenario B

Group-Level Authorship Attribution

‘ Imbalanced ‘ Undersampling ‘ Oversampling ‘ Am17 in [2]

Extracted Cuckoo | 0.850 (¢: 0.006
Filtered Cuckoo 0.888 (0: 0.023

VirusTotal

FilteredVMRay 0.882 (¢: 0.014

Dataset

) | 0.740 (o= 0.026) | 0.878 (c: 0.013)
) | 0.839 (¢: 0.025) | 0.912 (¢ 0.012)
0.930 (¢: 0.012) | 0.895 (0 0.019) | 0.941 (: 0.010)
) | 0.826 (0= 0.011) | 0.909 (¢: 0.011)

TABLE B.7: Recall Results Evaluating Am17 on Scenario C

0.93

‘ Imbalanced ‘ Undersampling ‘ Oversampling ‘ Am17 in [2]

Extracted Cuckoo | 0.896 (¢: 0.024) | 0.714 (0: 0.013) | 0.871 (c: 0.013) 0.933
Filtered Cuckoo 0.964 (0: 0.012) | 0.805 (0: 0.031) | 0.941 (co: 0.006)

VirusTotal

0.978 (0= 0.003) | 0.882 (¢: 0.020) | 0.980 (¢: 0.003)

FilteredVMRay 0.950 (c: 0.026) | 0.783 (¢: 0.011) | 0.950 (c: 0.009)

TABLE B.8: Precision Results Evaluating Am17 on Scenario C
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Dataset ‘ Imbalanced ‘ Undersampling ‘ Oversampling ‘ Am17 in [2]

Extracted Cuckoo | 0.982 (¢: 0.009) | 0.943 (c: 0.009) | 0.984 (c: 0.005)
Filtered Cuckoo 0.990 (c: 0.006) | 0.980 (o: 0.004) | 0.989 (c: 0.007)
VirusTotal 0.996 (c: 0.004) | 0.992 (¢: 0.002) | 0.999 (¢ 0.001)
FilteredVMRay 0.992 (c: 0.004) | 0.968 (c: 0.006) | 0.995 (c: 0.004)

TABLE B.9: AUC Results Evaluating Am17 on Scenario C

0.99






75

Appendix C

Most Important Features in a
Trained RFC

The 50 most important features that are extracted from a trained RFC as described in
Section 9.1.1 are listed in Tables C.1 and C.2. Note that the directly identifiable links
to malware actors or families are printed bold.

Extracted Cuckoo

Filtered Cuckoo

ntallocatevirtualmemory (0.030613)
ntcreatefile (0.029199)
ldrgetprocedureaddress (0.022173)
messageboxtimeoutw (0.021986)
ldrloaddll (0.021479)

ntclose (0.021213)
ntprotectvirtualmemory (0.017735)
createactctxw (0.016108)
seterrormode (0.014441)
Idrgetdllhandle (0.014361)
oleinitialize (0.014261)
regsetvalueexa (0.014201)
ntdelayexecution (0.013925)
getsystemtimeasfiletime (0.013784)
ntterminateprocess (0.013541)
cocreateinstance (0.013190)
ntwritefile (0.012980)

ntopentfile (0.012786)
setunhandledexceptionfilter (0.012555)
ldrunloaddll (0.012507)
ntfreevirtualmemory (0.011596)
ntopenkey (0.011011)

copyfilea (0.010918)
getfileattributesw (0.010774)
regclosekey (0.010430)
ntqueryvaluekey (0.010384)
couninitialize (0.010342)
regqueryvalueexa (0.010230)
ntresumethread (0.010204)
findresourcea (0.009915)
findresourceexw (0.009821)
regcreatekeyexa (0.009418)
regopenkeyexa (0.008826)
getsystemmetrics (0.008589)
ntopenmutant (0.008406)
ntdeviceiocontrolfile (0.008319)
regqueryvalueexw (0.008285)
createthread (0.008266)
coinitializeex (0.008252)

ntreadfile (0.008152)
regopenkeyexw (0.007910)
ntduplicateobject (0.007876)
loadresource (0.007807)
setfilepointer (0.007599)
searchpathw (0.007453)
oleconvertolestreamtoistorage (0.007334)
getsysteminfo (0.007243)
getadaptersinfo (0.007188)
regcreatekeyexw (0.007121)
getcomputernamea (0.006975)

2018 (0.006179)

11 (0.004540)

3840773 (0.004335)

2019 (0.004265)
5575a517844aded... (0.004042)
27 (0.003981)

01 (0.003869)

2277376 (0.003474)
e071e63a66€8311... (0.003270)
€19c4b4b529be2e... (0.003099)
c41c7c5cb09416b... (0.003036)
3852382 (0.002945)

2121728 (0.002595)

20 (0.002485)

0x63bc0000 (0.002437)
2273280 (0.002318)

dos (0.002176)

address (0.001819)

16 (0.001740)

2117632 (0.001719)

mode (0.001718)
peid_packer (0.001585)
keaddsystemservicetable (0.001575)
0x63d.c0000 (0.001524)
cannot (0.001468)

deletefilea (0.001342)
virtual_size (0.001257)

rdata (0.001206)

pe32 (0.001193)
virtual_address (0.001135)
srzu (0.001125)

onq10t4 (0.001112)

_eoyhhur (0.001110)
0x1000e0dc (0.001105)
0x1000e15¢ (0.001073)
0x1000e114 (0.001054)
regsetvalueexa (0.001034)

12 (0.001012)

seek_set (0.000990)

com0 (0.000957)

wrf (0.000947)

executable (0.000946)

packer (0.000929)

18 (0.000890)

accesscheck (0.000883)

tss (0.000873)

dll_installer (0.000865)
internetopena (0.000863)
0x0000c5b5 (0.000858)

xj (0.000858)

TABLE C.1: 50 Most Important Features Extracted from the RFC Us-
ing Different Cuckoo Reports
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VirusTotal Filtered VMRay

2018 (0.005308) 2019 (0.009035)
kernelmode (0.004474) 22 (0.006692)
2e7383f131fc3b7... (0.003908) | armadillo (0.004487)
358f4d568bd00dc... (0.003417) | created (0.004420)
365b828£383f8f3... (0.003391) | vmray_check_for_packed_pe_file (0.004403)
4096 (0.003322) _pe (0.004023)
62314fb44e1d832... (0.003294) | pe (0.003928)

virus1 (0.003250) packed (0.003758)

winnti (0.003050) report (0.003754)

24299 (0.002933) packer (0.003570)
aala993bb980165... (0.002675) | _packed_pe_file (0.003399)
4fc9e77ec66d439... (0.002584) | malware (0.003248)
4419e6e606d408e... (0.002533) | with (0.003177)

181030 (0.002449)
22397 (0.002368)
executable (0.002352)
words (0.002314)

pe32 (0.002309)

vir (0.002268)

win32 (0.002211)
19155b (0.002149)
28875 (0.002068)

50613 (0.002062)

18301 (0.002022)
2359b086a133960... (0.001968)
13564 (0.001945)
108344 (0.001833)
28876 (0.001799)
downloader (0.001750)
20181029 (0.001733)
totaledittime (0.001710)
miniduke (0.001692)
15400 (0.001665)
armadillo (0.001662)
20181030 (0.001648)
petype (0.001614)
probably (0.001604)
2cef86abb489ad... (0.001595)
dos (0.001542)

1040 (0.001522)

134 (0.001464)

dll (0.001445)

pages (0.001413)
_local_unwind?2 (0.001380)
20180918 (0.001377)
_adjust_fdiv (0.001366)
fanni (0.001359)
000731c51 (0.001357)
backdoor (0.001355)
timestamp (0.001355)

vti_rule_score (0.002986)
01 (0.002947)

rule_name (0.002833)
winword (0.002754)
ip_address (0.002708)
_static (0.002674)

v1 (0.002665)
ruleset_name (0.002658)
matched (0.002579)

is (0.002440)

apts (0.002427)
vti_classification (0.002407)
71 (0.002296)

exe (0.002273)
yara_match (0.002258)
description (0.002172)

14 (0.002128)

_yara (0.002106)

cloud (0.002105)
url_artifact (0.002095)
php (0.002090)

hopper (0.002078)
ref_file (0.002074)

32 (0.002050)

office16 (0.001987)
ruleset_id (0.001901)
rule_type (0.001849)
yoqz6d (0.001846)
rule_score (0.001842)
ruleset (0.001830)
process_dump (0.001808)
library (0.001790)
category_desc (0.001788)
policy (0.001772)
apt10_malware_sample_gen (0.001745)
18 (0.001736)
hkey_local_machine (0.001709)

TABLE C.2: 50 Most Important Features Extracted from the RFC Us-
ing VirusTotal and filtered VMRay Reports
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FIGURE D.1: Part of an extracted decision tree from a RFC trained on
filtered VMRay reports
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