
Radboud University Nijmegen

Faculty of Science

Where does this malware come
from?

Multi-class malware classification using static analysis and deep
learning with the Malconv machine learning model

Thesis BSc Computing Science

Author:
Wietze Mulder

Supervisors:
Alexandru C. Serban

Dr. Ir. Erik Poll

January 2020

Abstract

This thesis is about classifying state-sponsored malware using static analysis
and a convolutional neural network. The neural network we used is based on
the one described in [25] called Malconv. Small modifications are made to get
better results and to apply it to our multi-class classification problem. We have
trained a neural network on nation state malware so we can predict which coun-
try a piece of malware belongs to. Previous research has proven that machine
learning is an interesting approach at classifying malware. Malconv is a convo-
lutional neural network used for malware classification by training the network
with the binary as a whole. We try to classify the malware by country or Ad-
vanced Persistent Threat group, APT-group for short. APT-groups are hacker
groups with malicious intent to, for example, attack government agencies. In
this research the APT-group are financially backed by nation states.

The data set we use was previously published by a Radboud student named
Coen Boot from the Digital Security group. Next to publishing this data set we
also showed a method for classifying the data set. With static analysis we only
look at the binary content of the malware, without running the malware. With
dynamic analysis analyse what the binary does when it is executed. We use
static analysis, however the approach of Boot was based on dynamic analysis
with machine learning. Dynamic analysis requires running the samples in a
sandbox environment. However most sandbox tools are commercial products.
Therefore static analysis is more suitable for open-source distribution and often
faster than dynamic analysis.

We have found out that using Malconv, We reached an accuracy of 89.3% when
classifying the data set by 5 different countries. We ran multiple experiments
to improve accuracy and to identify the mis-classification. We have stated that
the some characteristics are shared across countries and thus may share their
malware.

Moreover, it is interesting to say we achieved satisfactory results with our
method, we have reached the same accuracy as the Malconv research[25]. Our
results differ from Boot’s machine learning with a dynamic analysis approach
on the same data set. Boot got a better accuracy for this data set, namely
95% compared to our 89%. Although we did not surpass the high-class per-
formance required to compete with other models in this field, we can say that
this methodology is suitable for further academic research. Future work could
extend the data base or learn more from the classifications with CAM mappings

Contents

1 Introduction 3
1.1 Outline . 4

2 What is Malware? 5
2.1 Characteristics of a malware binary 5

2.1.1 Obfuscation methods . 5
2.1.2 Detecting these traits . 6

2.2 Malware analysis . 6
2.3 Dynamic analysis . 6
2.4 Static analysis . 7

3 Related Work 9
3.1 Malconv . 10

4 Dataset for nation-state malware and performance metrics 12
4.1 Training and Test Sets . 12
4.2 How do we deal with unbalanced data sets? 12
4.3 Matthew Correlation Coefficient (or MCC) 13
4.4 Confusion Matrix . 13
4.5 Precision Recall Curve . 14
4.6 ROC curve and AUC . 14

5 Methodology and results 15
5.1 Experiments with a balanced data set 16
5.2 Using all data and have an imbalanced data set 17
5.3 Scoping in on Country 0 vs. Country 2 19
5.4 Per APT-group . 20
5.5 Final comparison . 22

6 Future work 23

7 Conclusion and discussion 24
7.1 Personal discussion . 25

A Appendix 30
A.1 Scripts used in this research . 30
A.2 Data set used in this research . 30
A.3 Parameter optimization . 30
A.4 PlaidML . 30
A.5 Hardware used in this research 31

1

List of Figures

5.1 Our process to classify malware samples 15
5.2 ROC-curve for under-sampled data set per country. In the legend,

country is replaced with class. 16
5.3 Confusion matrices under-sampled per country. left:confusion

matrix, right: normalized confusion matrix 17
5.4 Confusion matrices imbalanced per country. left:confusion ma-

trix, right: normalized confusion matrix 18
5.5 Precision recall curve per country. In the legend, country is re-

placed with class. 19
5.6 Confusion matrices for Country 0 vs. Country 2. left: confusion

matrix, right: normalized confusion matrix 20
5.7 Confusion matrices under-sampled per APT-group left: confusion

matrix, right: normalized confusion matrix 21

List of Tables

4.1 Data set per country . 12

5.1 Data set per APT-group . 21
5.2 Accuracy and MCC table . 22

A.1 Hardware specifications . 31

2

1. Introduction

Malware is a steadily growing problem with new samples occurring every day[3].
This is a problem because most systems, even those that are critical for our in-
frastructure are connected to the internet, thus available for attack for everyone.
Either to gain private information or to derange systems, there is an incentive
to attack such systems for cyber-criminals, Specialists have seen that cyber-
criminals become more sophisticated in their skill of malware development[3].
Malware is used to infect computers for malicious purposes, acting against the
interests of the computer user. This threat gives criminals the opportunity to
gather private information or to derange systems. Cyber-threats have extended
from individual or small organized groups to professional intelligence officers
leading state-sponsored cyber-missions. The complexity of the malware has
also grown, with its ever-growing techniques to evade anti-virus software and
technical analysis. State-sponsored Advanced Persistent Thread (APT) groups
make use of malware to exploit systems, spy on their targets or disorganize sys-
tems. With the increasing competence of attackers and their incentive to hide
their traces makes the authorship attribution increasingly harder. The complex
and laborious task asks for automation (or at least partly) of the analysis.

In order to fight against cyber-treats, it is an important part to know who the
attacker is. In state-sponsored malware this is important. In order to accuse
internationally an attacker, we need evidence for our accusation to open a trial
or other diplomatic mechanisms. Thus, we wish to analyse malware samples to
find the actor behind the malware and have a certain proof this actor is indeed
the author. This is called authorship attribution. Already a lot of research has
been done on authorship attribution of malware[2] and harmless software[7]. But
these techniques are not always easy to implement. Many developed techniques
require the source code of the malware. However, for most of the malware
the source code is not available. Furthermore, authors put a lot of effort into
obfuscating their code and hiding their traces to prevent attribution.

One single malware sample is most of the time part of a larger malware fam-
ily, developed by the same threat group. This collection contains important
knowledge to develop a broader picture of a certain APT group. Since malware
samples from the same malware families share a lot of properties and are most
of the time created by the same author, we can detect similar ”offspring” in the
same manner. An efficient way to perform family classification can be helpful
for authorship attribution.

Both authorship attribution and family classification are classification problems.
In order to automate a part of the analysis, we can train a system to determine
the author of a piece of malware, by means of classification. Classifying malware
samples with machine learning already had some history[19]. The field really
started about a decade ago[27], especially there is quite a lot of research about

3

android malware[28, 21]. In this research we want to focus on neural networks.
Neural networks have excelled on image[20], signal[10] and text[18] problems. By
learning from this success we may simplify our problem in classifying binaries.

In this research, we have chosen to use the framework called Malconv. Malconv
is a convolutional neural network that use the whole binary to train its model on.
This comes with many challenges and more information is given in Chapter 3.

Building a malware classification system requires a data set. A recent paper[4]
published a free-accessible data set with 3500 state-sponsored malware samples.
This data set can now be used for future research like this research. We will use
this data set for our research

Our goal of this bachelor thesis is to verify if it is possible to perform state-
sponsored malware authorship attribution using the malconv supervised learn-
ing model?

1.1 Outline
The structure of the thesis will be as the follows: First some background is
presented about malware and malware analysis in Chapter 2. After that we
cover the related work about other methodologies used in automated malware
classification, especially on supervised learning, in Chapter 3. The data set we
use for this thesis is interesting and we recommend to take a glance at Chapter 4.
We also explain how to deal with an imbalanced data set and this chapter is a
good read on performance metrics and which is also useful outside this research.
Finally we arrive at the most important part of this thesis in Chapter 5, the
methodology and results. If you cannot wait to research further on this thesis,
take a look at Chapter 6 where you can find the future work. At last we conclude
and discuss our research in Chapter 7. Supplemental information about the
scripts and hardware used in this research can be found in Appendix A.

4

2. What is Malware?

In this chapter we explain what malware is. We will also highlight some special
traits malware has compared to benign software. We also dive into malware
analysis in section 2.2, and the two main different approaches of analysis in
section 2.3 and section 2.4. If you are already very familiar with malware and
its analysis, you can skip to chapter 3 about the related work and recent trends
in this area of research.

2.1 Characteristics of a malware binary
The name Malware is derived from two words, malicious and software. The
best description would be software designed to intentionally execute malicious
practices. All computer programs have been designed with a certain purpose
in mind, a task they should execute. The design goal of a program has great
influence for the end-result of the binary. This also holds with malware, only
their goal is of malicious intent. The malicious intents may have different goals.
In most cases, its goals is one of the following: To disturb computer systems,
gather private information or to gain access to private computer systems.

Malware compiles to binaries just like ordinary programs, but there is a differ-
ence. Malware does not want to show their purpose in order to evade detection
from anti-virus, malware-detection and most of the times the victim. It could
therefore include information in the binary to trick the victim. In the next
sections we will explain the various ways a malware sample may use to hide its
intent.

2.1.1 Obfuscation methods

Anti-virus software has multiple known strategies to detect malicious intent.
However, malware evolves and has found multiple techniques to hide from mal-
ware scanners and anti-virus software. In the paragraph different scanning meth-
ods and their hiding techniques will be discussed.

Hash signatures First of all, the most simple approach, is to check the sig-
nature hash of a sample and look up in a database with signatures of
known malware sample. This approach can be easily mitigated by adding
randomized useless data in your binary[36].

System calls Second of all, a more sophisticated approach is to detect mal-
ware from the order of system calls a sample makes to detect malicious
intent[36]. This can be bypassed by adding noise in terms of nonsense
system calls.

Heuristics Third of all, Anti-virus scanners perform heuristics to identify sus-

5

picious characteristics. Even this can be mitigated by for example packing
the binary or encrypting the suspicious parts of your code.

As we have just learned, there are a lot of tactics to prevent being discovered.
And this list is only to name a few examples to show the difference between mal-
ware and benign software. In the next subsection we will explain the techniques
and the challenges of detecting malware.

2.1.2 Detecting these traits

Hiding tactics can be implemented in multiple ways, and the style is depending
on the programmer or group. This means that the same implementation of
traits in malware samples can be linked together. Coding style is on a great
level an identifier to the autho[7]. Even more simple traits, like comments
or variable names in code may reveal the language of the programmer. For
example, Chinese comments may reveal the origin of the author, but it could
be the case that they were put there with intent by a smart non-Chinese author
to trick the analysts.

Malware development is similar to developing normal software, it requires a lot
of complexity for a good end-result. One does not start from scratch when
starting a new project, we most of the times use code from previous projects to
use in the new project. Most of the times malware is build from older code from
previous malware. This means that characteristics resonate in previous work of
a hacker group or country. This is really useful for analysing malware families,
since they heavily share the same traits.

Since malware design starts to reach a great level of sophistication, undetected
solutions have a great value. These solutions can be sold on a black market
and may be used by other parties. This means that certain characteristics of
a malware family overlap with another family, since code is shared or traded
between parties.

2.2 Malware analysis
Analysis of malware can be divided into two categories. The first is dynamic
analysis and the latter is static analysis. Both are great methods to analyse
binaries and in the next two paragraphs we will discuss about the two methods.

In the next sections we will give an overview of the methods to analyse a piece
of malware, we will cover dynamic analysis and static analysis and different
related work that used machine learning to classify or attribute authors from
binaries.

2.3 Dynamic analysis
Dynamic analysis means running the executable and analysis its behaviour in-
side a sandboxed environment, for example an emulator. We can observe the

6

behaviour at run-time and observe the traces a sample produces like altered
files or network traffic. Most of the times, this gives a clearer picture about
the malware and it’s identity. But there are downsides using dynamic analysis.
Running each binary you want to classify in a dynamic fashion is very resource
intensive, because each time there needs to be a fresh emulator ready to anal-
yse. And above that, you also have to run the binary, and without knowing
what it will do this may impose risks, since the malware might contain sand-
box escalation techniques (although very rare). Besides, the malware may have
obfuscation methods to detect the sandboxed environment and not show their
behaviour[26]. Dynamic analysis also implies you can run the binary, however
this is not always the case.

Previous work has made multiple attempts to classify malware with a dynamic
approach. For example, by analysing the system call sequences[15]. System
calls are needed for any meaningful action like, opening a file, running a thread,
writing to the registry, or opening a network connection. this research uses the
system calls a piece of malware produces while running to identify the author.
The research achieves a good accuracy of 89.4%, and most of the error was
because one family in their data set is entirely mis-classified for another family.
It classifies the rest of the families with great accuracy.

Another way of analysis is by looking a reports made by a virus scanner. In
this paper[4] the researchers uses the scan report of the Cuckoo virus scanner
to identify the treat-group of a malware sample. The result of these reports
was the input for a neural network that classified the samples. The model was
trained and tested on state-sponsored malware.
However this comes with the negative aspects of dynamic analysis. Also the
software used in this research was proprietary and this means we are not able
to easily replicate the result.
We use the data set of nation-sponsored malware samples published in this
research. However, our research takes a static approach instead of their dynamic
approach. We also aim for the same goal, namely to try to classify the data set
by Country and by APT group.

Because of the hassle of setting up dynamic analysis and the use of proprietary
software that comes with dynamic analysis we have chosen to use static analysis
for this research. What static analysis is and all the good (and bad) parts about
it are explain in the next section.

2.4 Static analysis
Static analysis is the collection of methods analysing a sample without execut-
ing it. One can already retrieve quite some information just by looking. The
header of a binary contains quite some useful information. We can see for what
OS it is written and what programming language or compiler is used. Even
before further analysis we can retrieve quite some useful information by just
only looking at the readable characters in a binary[36]. Windows system calls
for example are readable as a human in the binary and in some cases variable
names are left in so we can figure out their purpose. Depending on the compiler

7

and compiler flags, we can even find comments in the compiled code. Variable
names and comment give away quite some information about the user. We can
now identify the language and understand the goal of the program better and
its way of working. It is also possible to disassemble or decompile the code to
gain knowledge about its source code. With this method we can substract the
program flow and find all system calls used in the code. However, static analysis
is susceptible to obfuscation of the binary. A piece of software called a “packer”
can compress and encrypt a binary to conceal its content. One may think that
only malware packs its binaries, but this is not the case[11]. Normal benign
binaries also use packers for their executables. Also an important aspect of
static analysis is that is it fast and it is most of the times faster than a dynamic
approach. With the leading reason being the hassle to boot up and emulator
and waiting for the malware to reveal its behaviour.

There are more challenges when performing static analysis, especially when
automating this process by machine learning or software. Binaries contain mul-
tiple modalities of information. this means that the malware contains human-
readable text, binary code or even arbitrary objects such as images. Due to
the characteristics of a binary, compiled functions in the program can be at
every location in the binary. The location of critically important functions can
extremely differ per binary. Because of function calls or jump commands, re-
sulting in that the flow of a program is not easily visible in the binary. Another
problem is that applications, build tools, and libraries developers use will be
updated and alternatives may be used in the future. This means that newer
malware may have the exact same behaviour, but due to updates in these tools,
the resulting binary may significantly differ from its outdated sibling. Also mal-
ware is written by a person and is often, as mentioned earlier, adjusted to avoid
detection. And when it comes to feeding the binary into a network, another
problem arises. If we treat each binary as a unit in a sequence, and since bina-
ries can be of an arbitrary size, how do we deal with a sequence classification
problem of two million bytes?

8

3. Related Work

Quite some interesting research already has been done in this field. But there
is still a lot to be researched. In this chapter we show what already has been
done and we show work related to our research. You can say that our research
overlaps two fields of research, the first being malware analysis and the other
being machine learning on software. We will highlight both fields

Previous research[33] showed promising results on classifiying binaries using the
PE-header of binaries. The research of Shafiq et al.[33] used a lot of domain
knowledge to achieve its more than 99% detection rate of their framework called
PE-miner. But we are interested in a framework without the use of domain
knowledge. Raff et al.[24] have made an really good attempt at classifying
whether malware is benign or malicious. By using only the PE-header of the
malware binaries, the researchers used using deep learning methods and without
the use of domain knowledge of malware. They have tested of different networks,
Fully connected neural network and a recurrent neural network, which were
trained from only the raw bytes of the PE header. The results were very positive
and they achieved an AUC of 97.7%. The most important message of these
results current is that neural networks are able to learn from raw byte data,
without domain knowledge.

Huang and Stokes[13] have created a multi-task neural network to classify it
whether it is benign or malicious and to classify it in 100 malware families. They
have designed a shallow neural network that was trained on dynamically ob-
tained features, namely a sequence of application programming interface (API)
call events plus their parameters and a sequence of null-terminated objects re-
covered from system memory during emulation. With their huge database of
4.5 million samples, they achieved an excellent performance in binary classifica-
tion and the family classification. An interesting note is that they mention that
dropout significantly reduces the error rate for both shallow and deep neural
architectures.

In the research of Saxe and Berlin[30] the researchers have designed a shallow
neural network on 4 features retrieved from static analysis all four in a 2 dimen-
sional array. The features were retrieved from the entropy of the file, the PE
header and the readable characters in the code.

N-gram is a contiguous sequence of n items from a given sample. This n-gram
model is widely used in text mining[8, 6]. Using binary n-gram features for
malware classification seems to be a previous preference[31, 22, 17]. These
papers have achieved great performance using this type of feature extraction.
In Kolter and Maloof[17], they show that the use of established methods of
text classification to detect and classify malicious executables using byte n-
gram feature selection and achieve great results. Not only bytes in binaries,

9

but also the disassembled opcodes may be used for classification. Opcodes are
the building block of a binary executable. opcode stands for ”Operation Code”
and it is a single instruction for the CPU. In Assembly language all individual
opcode have a name, like MOV, ADD, or JMP. By learning opcode sequences
Moskovitch et al.[22] were able the achieve great performances using opcode
n-gram feature selection.

But there seem to be downsides using n-gram. Raff et al.[26] have investigated
in byte n-gram features and have found some flaws using this method. First,
they discovered a flaw in how previous data sets were created that lead to an
over-estimation of classification accuracy. Second, they discovered that most
of the information contained in n-grams arise from string features that could
be obtained in simpler ways. Finally, they demonstrated that n-gram features
promote over-fitting, even with linear models and extreme regularization. Al-
though n-gram is a proven method to gather features, we have chosen not to
use N-grams in our approach.

In the research of Milosevic et al.[21], the researchers developed two static ap-
proaches to classify Android malware with machine learning. The first one was
a permission-based approach and the other one is based on source code analysis
utilizing a bag-of-words representation model.

Malware is also just software written by real adversaries. We want classify mal-
ware by the origin of the malware, since these malware is likely written by the
same author, we may use the knowledge of authorship attribution on malware to
gain understanding of its origin. Alrabaee et al.[2] created a compiler-agnostic
method for identifying the authors of program binaries. They designed a sys-
tem to recognize author coding habits by extracting author’s choices from binary
code. It filters out all compiler related functions and labels the library related
functions using their previous work, Binshape[34] and FOSSIL[1]. Then they
convert the user-related functions into canonical form that is robust against
heavy obfuscation. Then they collect author’s choices made during coding.
They trained their model on a large collection of source code and the correspond-
ing assembly instructions. They applied their system BinAuthor on real-world
malware and achieved great results.

All the previous methods are great, but we are looking for something that is:
open-source, free to use and has the possibility for adjustment to act as a multi-
class classifier. Luckily, we have found a fitting model that performs great,
namely Malconv[25]. A neural network that eats the binary as a whole.

3.1 Malconv
The goal of Malconv[25] is to decide if a binary is malicious or benign. The de-
sign goal was to minimize domain knowledge in the model. When deep learning
raw binaries there is a problem. Namely, these is a locality problem, the impor-
tant coding functions can be anywhere in the binaries, since when the critical
code in the source code changes location, it also changes location in the binary.
They managed to solve this problem by using a convolution neural layer. After
a lot of design attempts, the researchers figured out the best solution was a

10

simple design. An embedding layer, a 1D convolution, temporal MAX-Pooling
layer, a fully connected layer and a Softmax function at the end. The researcher
also optimized the model to handle huge data set. This is not important for this
research however but worth mentioning. In this thesis we use this model for our
classification, because it has achieved a great performance on classifying and it
is easy to implement because of the design where no pre-processing is needed.
We are curious to find out if the model is also capable of distinguishing multiple
countries of APT-groups

11

4. Dataset for nation-state mal-
ware and performance metrics

The data set used in this research is from the research of Boot [4] and is publicly
available. The data set contains of 3594 real world samples found on various
malware databases, labeled by Advanced Persistent Threat (APT) group and
country. The samples are compressed and encrypted with a password and stored
in the corresponding APT group folder. All sampled have been downloaded from
VirusTotal, a malware database and analysis platform where anyone can upload
samples to. Along with all the samples there is a csv-file with all labels and
hashes of the malware. No real pre-processing is needed. The whole data-set is
available at a Github repository. More information on retrieving the data set
and using it can be found in Appendix A

Note these malware samples are not syntactically created, they are real mal-
ware samples developed by nation funded developers. In order to focus on the
academic computer science side of this data set, we have anonymized the data
set for this research. But since interesting discussion rises from the geographic
origin of the malware we have the names of the countries presented in table 4.1.

Table 4.1: Data set per country

Country Anonymized # of samples
China Country 0 1338
Russia Country 1 627
North- Korea Country 2 273
USA Country 3 395
Pakistan Country 4 961
Total 3594

4.1 Training and Test Sets
This data set is split-up in a training set and a prediction set with a ratio of
9:1. We do this to have an accurate accuracy score on our data set. Since
this data set is relatively small, we use 10-fold cross validation to get accurate
performance measures.

4.2 How do we deal with unbalanced data sets?
Is we can observe in Chapter 4, our data set is unbalanced, almost half of
our data set is Country 0 and this brings extra challenges. The medical re-
search almost always deals with an unbalanced data set of its measures on their
patients[5]. Luckily most of the patients are healthy, and a minority is ill. How-

12

ever, identifying all the ill is way more important than identifying all the healthy
patients. A lot of research has been done on evaluating the quality of a model
that deal with an unbalanced data set.

We introduce class weights to Keras to inform the data set is imbalanced. This
will treat less occurring classes as important as the over-represented one. This
will give us a weighted loss function, which yields a more honest performance.

We can also improve the model by balancing the data set. This has two possi-
bilities, the first is syntactically creating samples for the the under-represented
classes and the second one is removing over-represented classes until we have
a balanced data set. Unfortunately, we cannot syntactically create samples,
since binaries have a vary complex structure. Luckily, we can always remove
over-represented classes. In our research we use a random under-sampler. We
cannot use a smart over-sampling method,because of the complex structure of
the binary.

The most straightforward method of calculating the performance of a model
is to calculate the accuracy that is: #correctpredictions

#samples . But this metrics is not
great for unbalanced data sets, since the over-represented classes will influence
the score a lot more than underrepresented classes. But these classes are most
of the times as important if not more important as the over-represented classes.
Luckily, the literature has developed other metrics to calculate the performance
of of a model. Since we also deal with balanced data set, we also use an ROC
curve, more information about it later on in this chapter. Notice we decided not
to choose Cohen’s Kappa for our research. Recent research[9] shows us we should
avoid using Cohen’s Kappa in classification and favor Matthews correlation
Coefficient over Cohen’s Kappa. The next section we will discuss about different
metrics and explain why we did use them in our research.

4.3 Matthew Correlation Coefficient (or MCC)
MCC takes into account all four values in the confusion matrix, and a high
value (close to 1) means that both classes are predicted well, even if one class
is disproportionately under- (or over-) represented[35]. In a multi-class calcula-
tion, the four values are the sum of all the combinations of two-class confusion
matrices. More details about the calculation can be found here[14]. The MCC
is in essence a correlation coefficient between the observed and predicted bi-
nary classifications; it returns a value between −1 and +1. A coefficient of +1
represents a perfect prediction, 0 no better than random prediction and −1 in-
dicates total disagreement between prediction and observation.[37] In this paper
we have chosen for the Matthew Correlation Coefficient, because MCC works
really well when using it for classification of imbalanced data[5]. It also works
well for a balanced data set.

4.4 Confusion Matrix
A confusion matrix is a matrix of the predictions per class. Each row in the
matrix represents the instances in an actual class and each column represents

13

the instances in the predicted class. instead of the number of instances we can
also normalize this by displaying the percentage of the number of instances of
the actual class. We can now see what classes the classifier confuses as another
class. The most useful information is that we are able to observe how classes
are wrongly predicted. It is interesting to know what countries or APT groups
are confused with other classes. This is the reason we use confusion matrices
for our research.

4.5 Precision Recall Curve
Before we can understand what a precision recall curve is, we need to understand
what precision and recall are. Precision expresses the proportion of the malware
samples our model says that were classified to, for example, Country 0 actually
were correctly from Country 0. Recall is the ability of a model to find all the
malware of a certain country within a data set Take colour prediction between
blue and red for example and a classifier that does not perform really well. Lets
take a data set of 12 samples with red or blue colors. Of the 8 identified as blue,
5 actually are blue (true positives), while the rest are red (false positives). The
precision would be 5/8. The recall would be 5/12. A precision Recall Curve is a
plot of the precision (y-axis) and the recall (x-axis) for different thresholds.The
strong point of these curves is that they treat a classes in an unbalanced data
set the same, since precision and recall only look at the relevant data points per
class. In this paper we also have chosen for the Precision Recall Curve. The
practical argument to use a precision recall curve is that we can now clearly
see which countries or APTs under-perform or over-perform compared to the
others.

4.6 ROC curve and AUC
An Receiver Operating Characteristic (ROC) curve is a plot of the True Positive
Rate (TPR) on the y-axis and the False Positive Rate (FPR) on the x-axis. This
means that the top left corner of the plot is the “ideal” point - a false positive
rate of zero, and a true positive rate of one. This is not very realistic, but it
does mean that to maximize the area under the curve (AUC) is usually better.
The “steepness” of ROC curves is also important, since it is ideal to maximize
the true positive rate while minimizing the false positive rate. It ultimately
helps us to understand how well-separated our data classes are.[32] ROC curves
are a great choice for comparing models[12]. However, ROC curves are over-
optimistic when used on a imbalanced data set. Precision Recall curves show
a more correct score in this case[29] ROC curves and the AUC can be of great
value when the data set is balanced. We use the ROC curve when we train on
a balanced data set.

14

5. Methodology and results

In this chapter we describe and use the different methods we shall use to analyse
the data set that is described in Chapter 4. We will run the experiments and
discuss the results for every experiments.

Dynamic and static analysis is just a first stage of the malware analysis, in most
research it is used to produce the features that are used for the machine learning.
Our process slightly differs from the standard method of automated analysis,
since we just feed the whole binary into the Malconv model. More explanation
about Malconv can be found in Chapter 3. The Figure 5.1 describes the process
used in this research.

Malware Malconv

Country 0

Country 1

Country 2

Country 3

Country 4

Figure 5.1: Our process to classify malware samples

The model presented in Figure 5.1 presents our flow. Malconv reads the malware
samples in a sequential manner and learns to classify the samples per country
or, in some experiments later discussed in this chapter, per APT-group.

The model we use in this research is inspired from the Malconv[25] model. At
first the model was designed for binary classification on an mostly balanced data
set. There are some parameters we have to change in order to set the model
towards an unbalanced multi-class classification problem. At first, we can adjust
the loss function. A loss function is used to measure the performance of a model
and adjust the weights in a network when training. The original model used
binary cross entropy which is well suited for binary classification, however using
multi-class cross entropy is needed for our multi-class research.

First, some practical information about the experiments. Every experiments
is validated using 10-fold cross validation. We have trained with 90% of the
data set and the remain 10% was used as the validation test Almost all of
the experiments converged quickly. This is the same as the Malconv research
mentioned.

The Malconv neural network is designed to decide if a sample is malware or not.

15

So without configuration, this did not work for our classification for multiple
classes. To classify the samples by country, the malconv model needs a slight
adjustment. The last layer, previously a single node, is changed to a dense layer
with 5 node and softmax activation.

5.1 Experiments with a balanced data set
As we can observe in Table 4.1 the data set in unbalanced. Country 0 has almost
half of the samples while the Country 2 only a fraction, 8% to be exact. This
means that the data-set is unbalanced, what could mean that by training on
more samples from Country 0 than other countries, the model favors Country 0
when predicting unknown samples. These problems can be solved by balancing
the data-set. To mitigate this problem we can balance out the training set
by means of over-sampling or under-sampling. notice that, over sampling is
not possible here because we cannot syntactically create working binaries from
our data set. Under-sampling is possible however. We have randomly under-
sampled our data set. With this under-sampled data set we have trained our
model and and the results can found in Figure 5.2 and Figure 5.3. As already
mentioned in Chapter 4, we used an ROC-curve here because this metric is of
best use when analysing a balanced data set.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC Curves

ROC curve of class 0 (area = 0.95)
ROC curve of class 1 (area = 0.96)
ROC curve of class 2 (area = 0.92)
ROC curve of class 3 (area = 1.00)
ROC curve of class 4 (area = 1.00)
macro-average ROC curve (area = 0.97)

Figure 5.2: ROC-curve for under-sampled data set per country. In the legend,
country is replaced with class.

As we can see in the results displayed in figure 5.2, we can see Country 0,
Country 1 and Country 2 perform the same. we can see Country 3 has perfect
accuracy. By looking at the AUC, we might say Country 4 also performs with
perfect accuracy, but notice the small bend at the left-top corner. This means
that there is still some mistakes made with classifying Country 4, only really
few since the AUC is rounded off to 1.00

16

Cou
ntr

y 0

Cou
ntr

y 1

Cou
ntr

y 2

Cou
ntr

y 3

Cou
ntr

y 4

Predicted label

Country 0

Country 1

Country 2

Country 3

Country 4

Tr
ue

 la
be

l

18 4 6 0 0

5 20 1 0 1

3 3 20 0 1

0 0 0 28 0

0 0 2 0 25

Balanced per country (1)

0

5

10

15

20

25

(a) Confusion matrix

Cou
ntr

y 0

Cou
ntr

y 1

Cou
ntr

y 2

Cou
ntr

y 3

Cou
ntr

y 4

Predicted label

Country 0

Country 1

Country 2

Country 3

Country 4

Tr
ue

 la
be

l

0.64 0.14 0.21 0.00 0.00

0.19 0.74 0.04 0.00 0.04

0.11 0.11 0.74 0.00 0.04

0.00 0.00 0.00 1.00 0.00

0.00 0.00 0.07 0.00 0.93

Balanced per country (1) (normalized)

0.0

0.2

0.4

0.6

0.8

1.0

(b) Normalized confusion matrix

Figure 5.3: Confusion matrices under-sampled per country. left:confusion ma-
trix, right: normalized confusion matrix

Since we concluded that the results are not perfect we wish to look where the
error is located. In figure 5.3, we can find in these confusion matrices where
the mis-classification is between the countries. We have chosen to show two
confusion matrices, one with the number of predicted samples and one with
normalized results, which means that it is a percentage of the actual label.
More information on confusion matrices can be found in section 4.4. If we look
at both the confusion matrices, we notice that our model has difficulty between
three countries, namely Country 0, Country 1 and Country 2. These three
countries are equally mis-classified with China.

5.2 Using all data and have an imbalanced data
set

The balanced experiment we balanced out the data set with the use of under-
sampling, removing samples until the data set is balanced. However, we lose a
lot of useful training data when we under-sample our data set in order to make
it balanced. It can be useful to use all the samples. So in this experiment we do
not balance our data set to see if adding more data will improve the performance
of our model. With a training set of 3234 samples and a validation set of 360
samples, we reached an accuracy of 89.3% using 10-fold cross validation.

Here we have two confusion matrices, one with absolute results (Figure 5.4) and
one with normalized results (Figure 5.4).

17

Cou
ntr

y 0

Cou
ntr

y 1

Cou
ntr

y 2

Cou
ntr

y 3

Cou
ntr

y 4

Predicted label

Country 0

Country 1

Country 2

Country 3

Country 4

Tr
ue

 la
be

l

127 6 0 0 1

8 51 1 0 3

10 2 15 0 0

0 0 0 40 0

1 3 0 0 92

unbalanced per country (2)

0

20

40

60

80

100

120

(a) Confusion matrix

Cou
ntr

y 0

Cou
ntr

y 1

Cou
ntr

y 2

Cou
ntr

y 3

Cou
ntr

y 4

Predicted label

Country 0

Country 1

Country 2

Country 3

Country 4

Tr
ue

 la
be

l

0.95 0.04 0.00 0.00 0.01

0.13 0.81 0.02 0.00 0.05

0.37 0.07 0.56 0.00 0.00

0.00 0.00 0.00 1.00 0.00

0.01 0.03 0.00 0.00 0.96

unbalanced per country (2) (normalized)

0.0

0.2

0.4

0.6

0.8

1.0

(b) Normalized confusion matrix

Figure 5.4: Confusion matrices imbalanced per country. left:confusion matrix,
right: normalized confusion matrix

We can see the results of our model on the prediction data set in Figure 5.4.
Compared to the results in the balanced experiment, we can see that there
is a change in mis-classification. Whereas samples from Country 0, wrongly
predicted as Country 2 cover 21% of the samples from Country 0 in the balanced
experiment, this mis-classification is reduced to 0%. But the mis-classifcation
”the other way around” is increased. in the balanced dataset malware samples
from Country 2 wrongly predicted as Country 0 cover 11% of the samples from
Country 2. In this imbalanced experiment this mid-classification is increased to
37%. It becomes clear that this experiment performs better on Country 0. Now
more of the mis-classification is from wrongly predicting countries as Country
0. The model had in particular trouble with predicting Country 1 and Country
2, But it is good in predicting the other countries namely Country 3, Country
4 and Country 0. Notice that Country 3 remains their perfect score.

These mis-classifications and correct classifications may have a geo-political ori-
gin. Different countries have different design flows. The model will have trouble
picking up the origin country because they share many of the same features
if these design flows or frameworks are shared between countries. It could be
the case that the malware in Country 2 and Country 1 share many traits with
malware from Country 0 because they are bought or stolen from this country.
This assumption also explains why the Country 3 and Country 4 are correctly
identified, because the countries have different frameworks and probably unique
identifying ways of designing the binaries.

18

In order to gain understanding how countries perform, we use a Precision Recall
curve (PR-curve). As we already mentioned Chapter 4, PR-curves are great for
measuring imbalanced data set. Because of this we use it for this experiment.
We do not use a ROC-curve this experiment, because an ROC-curve does not
work as well on imbalanced data set as the PR curve. The PR-curve can be
found in Figure 5.5.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision-Recall Curve

Precision-recall curve of class 0 (area = 0.966)
Precision-recall curve of class 1 (area = 0.911)
Precision-recall curve of class 2 (area = 0.824)
Precision-recall curve of class 3 (area = 1.000)
Precision-recall curve of class 4 (area = 0.983)
micro-average Precision-recall curve (area = 0.962)

Figure 5.5: Precision recall curve per country. In the legend, country is replaced
with class.

As can be seen in Figure 5.5, we notice that two curves are below the rest of the
curves, namely to curve of Country 2 and Country 1. This means that these two
countries are now performing worse than Country 0, compared to the balanced
experiment. They have both the least amount of area covered in the plot and
thus are the two countries that under-perform compared to the other countries.
Country 0 seems to be improved however.

5.3 Scoping in on Country 0 vs. Country 2
Since the model has trouble distinguishing between Country 0 and Country 2
we have our neural network train only on these countries, in order to understand
the biggest mis-classification of the model.

19

Cou
ntr

y 0

Cou
ntr

y 1

Predicted label

Country 0

Country 1

Tr
ue

 la
be

l 176 1

19 15 50

100

150

(a) Confusion matrix

Cou
ntr

y 0

Cou
ntr

y 1

Predicted label

Country 0

Country 1

Tr
ue

 la
be

l 0.99 0.01

0.56 0.44 0.2

0.4

0.6

0.8

(b) Normalized confusion matrix

Figure 5.6: Confusion matrices for Country 0 vs. Country 2. left: confusion
matrix, right: normalized confusion matrix

As seen in Figure 5.6, we can observe we do not gain any accuracy by scoping in
on those two countries. We may observe from this that the code or framework
used in the malware is very similar between the two countries. This may confirm
our our geo-political hypothesis that malware between the countries is shared.

5.4 Per APT-group
The samples can also be classified on APT-group (Advanced Persistent Threat
group). Advanced Persistent Thread groups are multiple attacks over time
identified from a single instance. a APT group may be a criminal hacker group
or a long-term plan from a nation state. In our research all APT-groups are
sponsored These labels are available in the data set and the same methodology
is used as for the country classification. In table 5.1 we can see all APT group
with their corresponding country and sample count. Note that the Countries
are colored and these colors will also be used in the confusion matrices of Figure
5.7. We have decided not to add the PR-curve these because with 11 colored
lines, the figure becomes very unclear and confusing to read.

20

Country APT Group Sample count
Country 0 APT 1 405
Country 0 APT 10 244
Country 0 APT 19 32
Country 0 APT 21 106
Country 0 APT 30 164
Country 0 Winnti 387
Country 1 APT 28 214
Country 1 APT 29 281
Country 1 Energetic Bear 132
Country 2 DarkHotel 273
Country 3 Equation Group 395
Country 4 Gorgon Group 961

Table 5.1: Data set per APT-group

APT
 1

APT
 10

APT
 19

APT
 21

APT
 28

APT
 29

APT
 30

Dark
Hote

l

En
erg

eti
c B

ea
r

Eq
ua

tio
n G

rou
p

Gorg
on

 Grou
p

Winn
ti

Predicted label

APT 1

APT 10

APT 19

APT 21

APT 28

APT 29

APT 30

DarkHotel

Energetic Bear

Equation Group

Gorgon Group

Winnti

Tr
ue

 la
be

l

32 0 0 0 1 3 0 2 0 0 0 2

2 15 1 0 2 0 2 1 0 0 1 1

0 0 1 0 1 0 0 0 0 0 0 1

0 0 0 11 0 0 0 0 0 0 0 0

0 0 0 0 18 0 0 1 0 0 1 1

3 0 0 0 0 22 0 1 0 0 0 2

0 0 0 0 0 0 14 1 0 0 0 1

1 2 0 0 1 0 0 21 0 0 0 3

0 0 2 0 0 0 0 0 11 0 0 0

0 0 0 0 0 0 0 0 0 39 0 0

0 0 0 0 0 0 0 1 0 0 95 1

1 1 0 0 0 1 1 2 0 0 0 32

APT Groups (6)

0

20

40

60

80

(a) Confusion matrix

APT
 1

APT
 10

APT
 19

APT
 21

APT
 28

APT
 29

APT
 30

Dark
Hote

l

En
erg

eti
c B

ea
r

Eq
ua

tio
n G

rou
p

Gorg
on

 Grou
p

Winn
ti

Predicted label

APT 1

APT 10

APT 19

APT 21

APT 28

APT 29

APT 30

DarkHotel

Energetic Bear

Equation Group

Gorgon Group

Winnti

Tr
ue

 la
be

l
0.80 0 0 0 0.03 0.07 0 0.05 0 0 0 0.05

0.08 0.60 0.04 0 0.08 0 0.08 0.04 0 0 0.04 0.04

0 0 0.33 0 0.33 0 0 0 0 0 0 0.33

0 0 0 1.00 0 0 0 0 0 0 0 0

0 0 0 0 0.86 0 0 0.05 0 0 0.05 0.05

0.11 0 0 0 0 0.79 0 0.04 0 0 0 0.07

0 0 0 0 0 0 0.88 0.06 0 0 0 0.06

0.04 0.07 0 0 0.04 0 0 0.75 0 0 0 0.11

0 0 0.15 0 0 0 0 0 0.85 0 0 0

0 0 0 0 0 0 0 0 0 1.00 0 0

0 0 0 0 0 0 0 0.01 0 0 0.98 0.01

0.03 0.03 0 0 0 0.03 0.03 0.05 0 0 0 0.84

APT Groups (6) (normalized)

0.0

0.2

0.4

0.6

0.8

1.0

(b) Normalized confusion matrix

Figure 5.7: Confusion matrices under-sampled per APT-group left: confusion
matrix, right: normalized confusion matrix

If we look at Figure 5.7, we can see that the mis-classification is somewhat scat-
tered over all different APT-groups. Although not visible in these figures, the
mis-classification varied quite a lot between experiments. except the APT group
related to Country 3 and Country 4. The reason for this could be that some
of the APT groups do not have much malware samples available in this data
set. And thus contain too few samples too train on and learn this identifying
characteristics and even less to predict on, increasing the variance in measured
performance. Nevertheless, these scattered mis-classification also show that the
model does not more have trouble distinguishing between APT groups from
the same country. This works hand in hand with the results Boot had when

21

predicting APT groups it was not trained on on a model that was trained on
different APT groups from the same country. There seems to be enough dif-
ference between these groups to differentiate them, although the origin of the
country is the same.

5.5 Final comparison
The Matthew correlation coefficient, MCC for short, is in essence a correlation
coefficient between the observed and predicted binary classifications; it returns a
value between −1 and +1. A coefficient of +1 represents a perfect prediction, 0
no better than random prediction and −1 indicates total disagreement between
prediction and observation. As already mentioned in Chapter 4, We use this
metric to gain knowledge about the classifier’s performance.

Table 5.2: Accuracy and MCC table

data set Accuracy MCC
Per country under-sampled 80.7% (σ: 5.2%) 77.8% (σ: 6.7%)
Per country imbalanced 89.3% (σ: 2.2%) 85.9% (σ: 3.5%)
Country 0 vs. Country 2 86.8% (σ: 3.6%) 35.8% (σ: 5.2%)
Per APT-group 85.2% (σ: 3.9%) 83.0% (σ: 2.0%)

In order to get a good representation of the performance, all the results were
retrieved by 10-fold cross validation. The variance (σ) is also presented in the
accuracy table in Table 5.2. A we can see in the accuracy tables in Table 5.2, we
increase our performance when adding more sample to our data set. We gain
performance when we look at the Matthew’s Correlation Coefficient. Interesting
to notice is that the APT group experiment has quite some good performance
compared to the imbalanced country experiment. This is very interesting be-
cause we now know Malconv is also to differentiate not only to two classes but
also to 12 classes. It is really interesting to see we had an overlap between Coun-
try 0 and Country 2 and Country 1. This could mean the framework or code of
the malware is shared or at least share a lot of similarities, but the behaviour
per country is significantly different. The most important part of this finding
is that this wasn’t the case with Boot’s dynamic analysis on the same data set.
What also is interesting to notice is that every one of the experiments we ran,
It has a perfect accuracy for Country 3. Every time it had 100% precision and
recall on Country 3 when the model struggled with the other countries.

22

6. Future work

Adversarial Malware binaries Neural networks are great for classification
purposes but they have a flaw. Because they do not see at a picture a normal
human does, certain trivial details may be critical for the classification choice
of the network. an adversarial attack tries to exploit this issue and tries to
find an slightly altered input not visible for the human eye that is wrongly
classified. This method of attack is also possible for binaries, but it is a challenge
because the code may break when slightly changing bytes. However, there are
some places where garbage data can be placed. Some parts in the PE header
may be altered and unused sections at the and are ignored. [16] has found an
adversarial attack on malware binaries by appending superfluous data at the
end of the binary. This will not alter the behaviour of the binary, but may alter
the classification of the malware binary. With their method they achieve an
evasion rate of 60% on the Malconv model, also used in this research. This is
alarming and is interesting for further research.

Extending the data set Malconv managed to increase the performance to
even 94% by training with and additional 2 million samples. Although this
amount is unrealistic, we think the data set can greatly improved when more
samples are added. As we read in the master thesis of Boot[4] we see that some
binaries are still missing. Maybe in the future these are published and retrieving
these samples will improve the data set. It could be interesting to expand on
these malware and finding out it is useful for expansion on this data set.

Learning more from the data set with CAM mappings Although our
model learns from training, we do not gain any knowledge about the malware.
Since our method is really fast in classifying, it could suffice to draw a quick
estimation in the probability of the malware samples belonging to a certain
task. Future work could look into producing a class activation map (CAM)[38]
for each class in order understand where the ”important” regions are in the
malware. This was also used in the Malconv research itself where they used in
to locate important sections in the binary.

23

7. Conclusion and discussion

In this work, we evaluated the use of static analysis on state-sponsored malware.
The data set we used contain binary samples per country and per APT-group.
the data set was from a publicly available repository. We used the Malconv[25]
model for our research. We have adjusted this model to have it classify by
country or by APT-group. We reached an accuracy of 89.3% and have stated
that the some characteristics are shared across some countries that may share
their malware.

In the research of Malconv itself[25], Raff et al. reached an accuracy of 88.1%1.
We can say we reached an expected performance with the use of Malconv. We
could say we even did better than expected, since the baseline accuracy of a
multi-class classification problem is lower than a binary classification problem.
this means that it is harder to guess a multi-class classification problem than a
binary counterpart.

An interesting finding is that this our results differ from Boot’s machine learning
with a dynamic analysis approach on the same data set. Although the methods
of classification differ quite a lot, we conclude that the approach of Boot got
a better accuracy for this data set, namely 95% compared to our 89%. As
mentioned in Chapter 2, dynamic analysis is able to gather more useful features
to identify a certain piece of malware. For this reason dynamic analysis will
be able to reach an higher accuracy than static analysis. We also see in other
research[15] dynamic analysis is able to perform better. This could be the reason
that Boot’s classification performed better than ours. Although our method is
faster then the dynamic approach of Coen, the time is well spent.

This biggest downside with this approach is that we are not able to find out what
identifying characteristics are for every country or APT group. Although our
model learns from training, we do not gain any knowledge about the malware.
Since our method is really fast in classifying, it could suffice to draw a quick
estimation in the probability of the malware samples belonging to a certain
task. Future work could look into producing a class activation map (CAM)[38]
for each class in order understand where the ”important” regions are in the
malware. This was also used in the Malconv research itself where they used in
to locate important sections in the binary.

This data set is of great quality, it is of decent portable size but not to small,
perfect for future bachelor theses. So we really recommend to see future research
on this data set. We thank Boot for publishing this data set.

It is worth noting that computing power was not a big issue. With 10-fold

1Malconv managed to increase the performance to even 94% by training with 2 million
samples. This is of course very impressive, but since we also do not train with 2 million
samples, this performance is ignored.

24

cross-validation I started to reach some boundaries on my laptop (see hardware
specs in Appendix A). Training my model took about 15 minutes, enough time
to pick up another task in the meantime or grab a coffee. It is worth noting
that with a modern laptop and possibly with GPU enabled training, the waiting
times will not be a problem at all. Hardware specs can be found in Appendix A.

7.1 Personal discussion
In retrospect, the course Data mining was really useful. It helped me a lot
in the skills of using libraries like numpy, pandas, matplotlib and sklearn.
The course was also useful because it learned me the methodology of a machine
learning experiment. Since I am following the Cyber-security track, I am glad
that a took this course in my free elective.

25

Bibliography

[1] Saed Alrabaee, Paria Shirani, Lingyu Wang, and Mourad Debbabi. Fossil:
a resilient and efficient system for identifying foss functions in malware
binaries. ACM Transactions on Privacy and Security (TOPS), 21(2):8,
2018.

[2] Saed Alrabaee, Paria Shirani, Lingyu Wang, Mourad Debbabi, and Aiman
Hanna. On leveraging coding habits for effective binary authorship attri-
bution. In European Symposium on Research in Computer Security, pages
26–47. Springer, 2018.

[3] Christiaan Beek, Taylor Dunton, John Fokker, Steve Grobman, Tim Hux,
Tim Polzer, Marc Rivero Lopez, Thomas Roccia, Jessica Saavedra-Morales,
Raj Samani, and Ryan Sherstobitof. Mcafee labs threats report august
2019. Technical report, McAfee, 2019.

[4] Coen Boot. Applying supervised learning on malware authorship attribu-
tion. Master’s thesis, Radboud University Nijmegen, 2019.

[5] Sabri Boughorbel, Fethi Jarray, and Mohammed El-Anbari. Optimal clas-
sifier for imbalanced data using matthews correlation coefficient metric.
PloS one, 12(6):e0177678, 2017.

[6] Peter F Brown, Peter V Desouza, Robert L Mercer, Vincent J Della Pietra,
and Jenifer C Lai. Class-based n-gram models of natural language. Com-
putational linguistics, 18(4):467–479, 1992.

[7] Aylin Caliskan, Fabian Yamaguchi, Edwin Dauber, Richard Harang, Kon-
rad Rieck, Rachel Greenstadt, and Arvind Narayanan. When coding style
survives compilation: De-anonymizing programmers from executable bina-
ries. arXiv preprint arXiv:1512.08546, 2015.

[8] William B Cavnar, John M Trenkle, et al. N-gram-based text categoriza-
tion. In Proceedings of SDAIR-94, 3rd annual symposium on document
analysis and information retrieval, volume 161175. Citeseer, 1994.

[9] Rosario Delgado and Xavier-Andoni Tibau. Why cohen’s kappa should be
avoided as performance measure in classification. PloS one, 14(9), 2019.

[10] A Fehske, J Gaeddert, and Jeffrey H Reed. A new approach to signal
classification using spectral correlation and neural networks. In First IEEE
International Symposium on New Frontiers in Dynamic Spectrum Access
Networks, 2005. DySPAN 2005., pages 144–150. IEEE, 2005.

[11] Fanglu Guo, Peter Ferrie, and Tzi-Cker Chiueh. A study of the packer
problem and its solutions. In International Workshop on Recent Advances
in Intrusion Detection, pages 98–115. Springer, 2008.

26

[12] Karimollah Hajian-Tilaki. Receiver operating characteristic (roc) curve
analysis for medical diagnostic test evaluation. Caspian journal of internal
medicine, 4(2):627, 2013.

[13] Wenyi Huang and Jack W Stokes. Mtnet: a multi-task neural network for
dynamic malware classification. In International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment, pages 399–418.
Springer, 2016. Great read, explains every design decision.

[14] Giuseppe Jurman, Samantha Riccadonna, and Cesare Furlanello. A com-
parison of mcc and cen error measures in multi-class prediction. PloS one,
7(8):e41882, 2012.

[15] Bojan Kolosnjaji, Apostolis Zarras, George Webster, and Claudia Eck-
ert. Deep learning for classification of malware system call sequences.
In Australasian Joint Conference on Artificial Intelligence, pages 137–149.
Springer, 2016.

[16] Bojan Kolosnjaji, Ambra Demontis, Battista Biggio, Davide Maiorca, Gior-
gio Giacinto, Claudia Eckert, and Fabio Roli. Adversarial malware binaries:
Evading deep learning for malware detection in executables. In 2018 26th
European Signal Processing Conference (EUSIPCO), pages 533–537. IEEE,
2018.

[17] J Zico Kolter and Marcus A Maloof. Learning to detect and classify ma-
licious executables in the wild. Journal of Machine Learning Research, 7
(Dec):2721–2744, 2006.

[18] Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. Recurrent convolutional
neural networks for text classification. In Twenty-ninth AAAI conference
on artificial intelligence, 2015.

[19] Terran Lane. Machine learning techniques for the domain of anomaly de-
tection for computer security. Purdue University, Jul, 16, 1998.

[20] Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi. V-net: Fully
convolutional neural networks for volumetric medical image segmentation.
In 2016 Fourth International Conference on 3D Vision (3DV), pages 565–
571. IEEE, 2016.

[21] Nikola Milosevic, Ali Dehghantanha, and Kim-Kwang Raymond Choo. Ma-
chine learning aided android malware classification. Computers & Electrical
Engineering, 61:266–274, 2017.

[22] Robert Moskovitch, Clint Feher, Nir Tzachar, Eugene Berger, Marina
Gitelman, Shlomi Dolev, and Yuval Elovici. Unknown malcode detection
using opcode representation. In European conference on intelligence and
security informatics, pages 204–215. Springer, 2008.

[23] Edward Raff, Richard Zak, Russell Cox, Jared Sylvester, Paul Yacci, Re-
becca Ward, Anna Tracy, Mark McLean, and Charles Nicholas. An in-
vestigation of byte n-gram features for malware classification. Journal of
Computer Virology and Hacking Techniques, 14(1):1–20, 2016.

27

[24] Edward Raff, Jared Sylvester, and Charles Nicholas. Learning the pe
header, malware detection with minimal domain knowledge. In Proceedings
of the 10th ACM Workshop on Artificial Intelligence and Security, pages
121–132. ACM, 2017.

[25] Edward Raff, Jon Barker, Jared Sylvester, Robert Brandon, Bryan Catan-
zaro, and Charles K Nicholas. Malware detection by eating a whole exe.
In Workshops at the Thirty-Second AAAI Conference on Artificial Intelli-
gence, 2018.

[26] Thomas Raffetseder, Christopher Kruegel, and Engin Kirda. Detecting
system emulators. In International Conference on Information Security,
pages 1–18. Springer, 2007.

[27] Konrad Rieck, Philipp Trinius, Carsten Willems, and Thorsten Holz. Au-
tomatic analysis of malware behavior using machine learning. Journal of
Computer Security, 19(4):639–668, 2011.

[28] Justin Sahs and Latifur Khan. A machine learning approach to android
malware detection. In 2012 European Intelligence and Security Informatics
Conference, pages 141–147. IEEE, 2012.

[29] Takaya Saito and Marc Rehmsmeier. The precision-recall plot is more infor-
mative than the roc plot when evaluating binary classifiers on imbalanced
datasets. PloS one, 10(3):e0118432, 2015.

[30] Joshua Saxe and Konstantin Berlin. Deep neural network based mal-
ware detection using two dimensional binary program features. In 2015
10th International Conference on Malicious and Unwanted Software (MAL-
WARE), pages 11–20. IEEE, 2015.

[31] Matthew G Schultz, Eleazar Eskin, F Zadok, and Salvatore J Stolfo. Data
mining methods for detection of new malicious executables. In Proceedings
2001 IEEE Symposium on Security and Privacy. S&P 2001, pages 38–49.
IEEE, 2000.

[32] scikit learn. Receiver operating characteristic (roc), 2019.
URL https://scikit-learn.org/stable/auto_examples/model_

selection/plot_roc.html.

[33] M Zubair Shafiq, S Momina Tabish, Fauzan Mirza, and Muddassar Farooq.
Pe-miner: Mining structural information to detect malicious executables
in realtime. In International Workshop on Recent Advances in Intrusion
Detection, pages 121–141. Springer, 2009.

[34] Paria Shirani, Lingyu Wang, and Mourad Debbabi. Binshape: Scalable
and robust binary library function identification using function shape. In
International Conference on Detection of Intrusions and Malware, and Vul-
nerability Assessment, pages 301–324. Springer, 2017.

[35] Boaz Shmueli. Matthews correlation coefficient is the best classification
metric you’ve never heard of, 2019. Towards Data Science.

28

https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html

[36] Michael Sikorski and Andrew Honig. Practical malware analysis: the hands-
on guide to dissecting malicious software. no starch press, 2012.

[37] Wikipedia. Matthews correlation coefficient, 2019.

[38] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Tor-
ralba. Learning deep features for discriminative localization. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages
2921–2929, 2016.

29

A. Appendix

A.1 Scripts used in this research
We have the scripts we wrote in this thesis made publicly available. The instal-
lation procedure and more instructions are described on the Github Repository
here:
https://github.com/keukentrap/thesis

A.2 Data set used in this research
You can find the data set used in this research here:
https://github.com/cyber-research/APTMalware

Pre-processing the data set is quite simple. We need to download the repository
and extract all binaries. After that, we need to strip superfluous information
in the csv-file and the data set is ready to use. We have provided a script
automating this process.

The Github repository of the data set consists of many encrypted zip-files. Boot
already made an effort to extract these and the scripts are available here:
https://github.com/cyber-research/APTAttribution

A.3 Parameter optimization
In this research, we tested many learning rate schedulers and learning rate
optimizers for our research, a lot of them resulted in over-fitting, adam and
amsgrad for example. We ended on using SGD with a learning rate of 0.01.
We also experimented with different learning rate schedulers. We have covered:
Early stopping, step decay, ReduceLRonPlateau We have also settled for Early
stopping, to speed up the training time and the learning rate scheduler called
”ReduceLROnPlateau”. This will reduce the learning rate when the validation
loss does not improve for 3 epochs. Also we tested a few loss functions, like
binary cross entropy and kullback leibner divergence. We resulted in using
categorical cross entropy. More information about these parameters can be
found in the repository.

A.4 PlaidML
Tensorflow has a possibility to run on a GPU. This makes training and predict
a lot faster. However, by default this only runs on a dedicated Nvidia graphics
card. Most laptop and PC’s do not have this available. PlaidML could solve
this issue. PlaidML is a so-called tensor compiler that ”brings Deep Learning to

30

https://github.com/keukentrap/thesis
https://github.com/cyber-research/APTMalware
https://github.com/cyber-research/APTAttribution

Every Device”.1 PlaidML could make your graphics card in your device available
for tensorflow, which will significantly decrease training times. Unfortunately,
It did not work yet on my (old) laptop, but could be really useful on other
machines.

A.5 Hardware used in this research
The hardware used in the start of this research was a business laptop from 2012.
It was do-able but tedious when running a lot of experiments. We switched to
a GPU-accelerated VPS from Microsoft Azure that is in the first $100 free for
students. This worked as a charm and really sped up the training time.

Table A.1: Hardware specifications

Component Laptop
Model Dell Latitude E6430
CPU Intel(R) Core(TM) i5-3320M
GPU Intel R© HD Graphics 4000 (not used in this research)
RAM 8GB

1https://www.intel.ai/plaidML/

31

	Introduction
	Outline

	What is Malware?
	Characteristics of a malware binary
	Obfuscation methods
	Detecting these traits

	Malware analysis
	Dynamic analysis
	Static analysis

	Related Work
	Malconv

	Dataset for nation-state malware and performance metrics
	Training and Test Sets
	How do we deal with unbalanced data sets?
	Matthew Correlation Coefficient (or MCC)
	Confusion Matrix
	Precision Recall Curve
	ROC curve and AUC

	Methodology and results
	Experiments with a balanced data set
	Using all data and have an imbalanced data set
	Scoping in on Country 0 vs. Country 2
	Per APT-group
	Final comparison

	Future work
	Conclusion and discussion
	Personal discussion

	Appendix
	Scripts used in this research
	Data set used in this research
	Parameter optimization
	PlaidML
	Hardware used in this research

